Resistance of pearlite against hydrogen-assisted fatigue crack growth

[1]  M. Koyama,et al.  Transition mechanism of cycle- to time-dependent acceleration of fatigue crack-growth in 0.4%C Cr-Mo steel in a pressurized gaseous hydrogen environment , 2022, International Journal of Fatigue.

[2]  Yuhei Ogawa,et al.  Dual roles of pearlite microstructure to interfere/facilitate gaseous hydrogen-assisted fatigue crack growth in plain carbon steels , 2022, International Journal of Fatigue.

[3]  N. Tsuji,et al.  Effects of local stress, strain, and hydrogen content on hydrogen-related fracture behavior in low-carbon martensitic steel , 2021 .

[4]  Yuhei Ogawa,et al.  Pearlite-driven surface-cracking and associated loss of tensile ductility in plain-carbon steels under exposure to high-pressure gaseous hydrogen , 2020 .

[5]  Yuhei Ogawa,et al.  Hydrogen-assisted, intergranular, fatigue crack-growth in ferritic iron: Influences of hydrogen-gas pressure and temperature variation , 2020 .

[6]  F. Berto,et al.  Loss of integrity of hydrogen technologies: A critical review , 2020 .

[7]  Yuhei Ogawa,et al.  A mechanism behind hydrogen-assisted fatigue crack growth in ferrite-pearlite steel focusing on its behavior in gaseous environment at elevated temperature , 2020 .

[8]  Yuhei Ogawa,et al.  Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake , 2018, Acta Materialia.

[9]  U. Eduok,et al.  Hydrogen related degradation in pipeline steel: A review , 2018, International Journal of Hydrogen Energy.

[10]  N. Tsuji,et al.  Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel , 2018, International Journal of Hydrogen Energy.

[11]  J. Neugebauer,et al.  Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures , 2018 .

[12]  S. Matsuoka,et al.  Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment , 2017 .

[13]  S. Matsuoka,et al.  Material performance of age-hardened beryllium–copper alloy, CDA-C17200, in a high-pressure, gaseous hydrogen environment , 2017 .

[14]  N. Tsuji,et al.  Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels , 2017 .

[15]  N. Tsuji,et al.  Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel , 2017 .

[16]  S. Matsuoka,et al.  Investigation of hydrogen transport behavior of various low-alloy steels with high-pressure hydrogen gas , 2015 .

[17]  S. Matsuoka,et al.  Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere , 2015 .

[18]  E. Drexler,et al.  Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment , 2014 .

[19]  P. Sofronis,et al.  Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations , 2013 .

[20]  Zhidan Sun,et al.  Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency , 2013, Metallurgical and Materials Transactions A.

[21]  Hervé Barthelemy,et al.  Hydrogen storage – Industrial prospectives , 2012 .

[22]  Y. Murakami,et al.  A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel , 2012, International Journal of Fracture.

[23]  Zhidan Sun,et al.  Fatigue crack propagation under gaseous hydrogen in a precipitation-hardened martensitic stainless steel , 2011 .

[24]  Brian P. Somerday,et al.  A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel , 2010 .

[25]  Chun‐Sing Lee,et al.  Microstructural influences on hydrogen delayed fracture of high strength steels , 2009 .

[26]  三郎 松岡,et al.  900 MPa 級低合金鋼 SCM435 の引張特性に及ぼす水素の影響 , 2006 .

[27]  C. Mcmahon Hydrogen-induced intergranular fracture of steels , 2001 .

[28]  C. Capdevila,et al.  Characterization and morphological analysis of pearlite in a eutectoid steel , 2000 .

[29]  A. J. Mcevily,et al.  Hydrogen-assisted cracking , 1991 .

[30]  Donald L. Johnson,et al.  Effect of pearlite morphology on hydrogen permeation, diffusion, and solubility in carbon steels , 1990 .

[31]  T. Baker,et al.  Effect of prior austenite grain size and pearlite interlamellar spacing on strength and fracture toughness of a eutectoid rail steel , 1986 .

[32]  R. D. McCright,et al.  Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys , 1979 .

[33]  K. Tomatsu,et al.  Anisotropy in Hydrogen Embrittlement Resistance of Drawn Pearlitic Steel Investigated by in-situ Microbending Test during Cathodic Hydrogen Charging , 2020, Tetsu-to-Hagane.

[34]  T. Iijima,et al.  Various strength properties of SCM435 and SNCM439 low-alloy steels in 115 MPa hydrogen gas and proposal of design guideline , 2017 .

[35]  M. Dadfarnia,et al.  The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas , 2012, Metallurgical and Materials Transactions A.

[36]  John J. Lewandowski,et al.  Microstructure-property relationships in pearlitic eutectoid and hypereutectoid carbon steels , 2002 .

[37]  A. Kimura,et al.  Hydrogen embrittlement in high purity iron single crystals , 1986 .