Nearly tight bounds on the number of Hamiltonian circuits of the hypercube and generalizations
暂无分享,去创建一个
[1] H. Wilf. On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.
[2] Michel Mollard. Un Nouvel Encadrement du Nombre de Cycles Hamiltoniens du n-Cube , 1988, Eur. J. Comb..
[3] Jirí Fink,et al. Perfect matchings extend to Hamilton cycles in hypercubes , 2007, J. Comb. Theory, Ser. B.
[4] M. Mollard. New bounds for the number of Hamiltonian cycles of an n -cube , 1988 .
[5] S. Goodman,et al. On the number of Hamiltonian circuits in the $n$-cube , 1975 .
[6] Henryk Minc,et al. Upper bounds for permanents of $\left( {0,\,1} \right)$-matrices , 1963 .
[7] Donald E. Knuth,et al. Stable Networks and Product Graphs , 1995 .
[8] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .
[9] D. Falikman. Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .
[10] Robert James Douglas,et al. Bounds on the number of Hamiltonian circuits in the n-cube , 1977, Discret. Math..
[11] M. Fisher. Statistical Mechanics of Dimers on a Plane Lattice , 1961 .