Control of dead-time systems using derivative free particle swarm optimisation

Particle swarm optimisation (PSO), a population-based nature inspired algorithm has mostly been used for solving continuous optimisation problems, discrete variants also exist. It finds application in most of the engineering design problems. This paper introduces two improved forms of PSO algorithm applied to PID controller and Smith predictor design for a class of time delay systems. In this paper, derivative free optimisation methods, namely simplex derivative pattern search and implicit filtering are used to hybridise PSO algorithm with improved convergence than original PSO. The effectiveness of the proposed algorithms namely SDPS-PSO, IMF-PSO are demonstrated using unit step set point response for a class of dead-time systems using PID controller and Smith predictor designed using the proposed hybrid PSO algorithms. The results are compared with earlier controller tunings proposed by Kookos, Syrcos, Chidambaram, Kanthaswamy and Luyben.

[1]  C. T. Kelley,et al.  Implicit Filtering , 2011 .

[2]  Teodor Gabriel Crainic,et al.  Introduction to the Special Issue on Parallel Meta-Heuristics , 2002, J. Heuristics.

[3]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[4]  J. Beddoes,et al.  Case study 6: Manufacture of stainless steel automotive exhaust systems , 1999 .

[5]  A. Visioli Optimal tuning of PID controllers for integral and unstable processes , 2001 .

[6]  Tamara G. Kolda,et al.  Asynchronous parallel pattern search for nonlinear optimization , 2000 .

[7]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[8]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[9]  Jovitha Jerome,et al.  Design of PID controllers for dead-time systems using simulated annealing algorithms , 2010, Int. J. Autom. Control..

[10]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[11]  Ioannis K. Kookos,et al.  PID controller tuning using mathematical programming , 2004 .

[12]  W. Luyben Tuning proportional-integral-derivative controllers for integrator/deadtime processes , 1996 .

[13]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[14]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[15]  R. Padma Sree,et al.  A simple method of tuning PID controllers for integrator/dead-time processes , 2003, Comput. Chem. Eng..

[16]  ChunXia Zhao,et al.  Particle swarm optimization with adaptive population size and its application , 2009, Appl. Soft Comput..

[17]  A. Selvakumar,et al.  A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems , 2007, IEEE Transactions on Power Systems.

[18]  Günther R. Raidi A unified view on hybrid metaheuristics , 2006 .

[19]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[20]  Luís N. Vicente,et al.  Using Sampling and Simplex Derivatives in Pattern Search Methods , 2007, SIAM J. Optim..

[21]  Enrique Alba,et al.  Parallel Metaheuristics: A New Class of Algorithms , 2005 .

[22]  William L. Luyben,et al.  Tuning proportional-integral controllers for processes with both inverse response and deadtime , 2000 .

[23]  Qiu Chen,et al.  Particle swarm optimisation algorithm with forgetting character , 2010, Int. J. Bio Inspired Comput..

[24]  A. Immanuel Selvakumar,et al.  Anti-predatory particle swarm optimization : Solution to nonconvex economic dispatch problems , 2008 .

[25]  Teodor Gabriel Crainic,et al.  Parallel Strategies for Meta-Heuristics , 2003, Handbook of Metaheuristics.

[26]  W. Luyben,et al.  Tuning PI controllers for integrator/dead time processes , 1992 .

[27]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[28]  Chu Kiong Loo,et al.  Hybrid particle swarm optimization algorithm with fine tuning operators , 2009, Int. J. Bio Inspired Comput..

[29]  Tao Zhang,et al.  A novel hybrid particle swarm optimisation method applied to economic dispatch , 2010, Int. J. Bio Inspired Comput..

[30]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.