Development of an Onboard Doppler Lidar for Flight Safety

Air turbulence has become a major cause of significant injuries and aircraft damages. Timely advanced warning of turbulence ahead of an aircraft may allow pilots to take appropriate action to minimize potential damage, such as reducing speed and securing passengers and unsecured objects, or to avoid the turbulence altogether. The aim of our research is to develop a practical, onboard, Lidar-based proactive sensor that will detect air turbulence in clear air at a range of 5 n miles (9.3 km) at cruising altitudes. In February 2007 we successfully measured wind speeds approximately 3 n miles (5.6 km) ahead of an aircraft in low-altitude flight experiments, and in a subsequent experiment in July of the same year, we succeeded in detecting air turbulence before encountering it. An upgraded 5-n-mile Lidar for low altitudes was developed in fiscal year 2007, and has successfully measured wind speeds at ranges up to 5 n miles in ground tests. This paper describes the master development plan of our Lidar turbulence sensor and the results of basic flight and ground experiments.