Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces.

[1]  D. Fuchs,et al.  Conformational investigation of the cofactor (6R,1'R,2'S-)-5,6,7,8-tetrahydrobiopterin. , 1995, Biochimica et biophysica acta.

[2]  E. Werner,et al.  Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts , 1990, The Journal of experimental medicine.

[3]  M. Marletta,et al.  Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. , 1989, The Journal of biological chemistry.

[4]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[5]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[6]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Kaufman,et al.  Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. , 1972, The Journal of biological chemistry.

[8]  E. P. Kennedy,et al.  A NEW PTERIDINE-REQUIRING ENZYME SYSTEM FOR THE OXIDATION OF GLYCERYL ETHERS. , 1964, The Journal of biological chemistry.

[9]  G. Reibnegger,et al.  Ab Initio Quantum Chemical Calculations on the Stability of Different Tautomers of 6- and 7-Phenacetyl Pterin , 1993 .

[10]  Leon N. Cooper,et al.  A possible organization of animal memory and learning , 1973 .

[11]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .