A weak characterisation of the Delaunay triangulation
暂无分享,去创建一个
[1] Th. Motzkin. Beiträge zur Theorie der linearen Ungleichungen , 1936 .
[2] T. Motzkin. Two Consequences of the Transposition Theorem on Linear Inequalities , 1951 .
[3] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[4] Thomas Martinetz,et al. Topology representing networks , 1994, Neural Networks.
[5] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1994, ACM Trans. Graph..
[6] H. Edelsbrunner. The union of balls and its dual shape , 1995 .
[7] Herbert Edelsbrunner,et al. Triangulating Topological Spaces , 1997, Int. J. Comput. Geom. Appl..
[8] M. Bern,et al. Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.
[9] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[10] David Letscher,et al. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds , 2000, SCG '00.
[11] K. Sugihara. Laguerre Voronoi Diagram on the Sphere , 2002 .
[12] Sunghee Choi,et al. A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..
[13] Gunnar E. Carlsson,et al. Topological estimation using witness complexes , 2004, PBG.
[14] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[15] Tamal K. Dey,et al. Manifold reconstruction from point samples , 2005, SODA '05.
[16] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[17] Herbert Edelsbrunner,et al. Alpha-Beta Witness Complexes , 2007, WADS.
[18] Herbert Edelsbrunner,et al. Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.
[19] Leonidas J. Guibas,et al. Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.
[20] Frédéric Chazal,et al. Stability and Computation of Topological Invariants of Solids in ${\Bbb R}^n$ , 2007, Discret. Comput. Geom..
[21] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[22] Steve Oudot,et al. Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.
[23] Steve Oudot. On the Topology of the Restricted Delaunay Triangulation and Witness Complex in Higher Dimensions , 2008, ArXiv.
[24] Frédéric Chazal,et al. A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..
[25] R. Ho. Algebraic Topology , 2022 .