Does efficiency sensing unify diffusion and quorum sensing?

Quorum sensing faces evolutionary problems from non-producing or over-producing cheaters. Such problems are circumvented in diffusion sensing, an alternative explanation for quorum sensing. However, both explanations face the problems of signalling in complex environments such as the rhizosphere where, for example, the spatial distribution of cells can be more important for sensing than cell density, which we show by mathematical modelling. We argue that these conflicting concepts can be unified by a new hypothesis, efficiency sensing, and that some of the problems associated with signalling in complex environments, as well as the problem of maintaining honesty in signalling, can be avoided when the signalling cells grow in microcolonies.

[1]  M. Merighi,et al.  Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1 , 2004, Plant Physiology.

[2]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[3]  L. Eberl,et al.  Visualization of N-Acylhomoserine Lactone-Mediated Cell-Cell Communication between Bacteria Colonizing the Tomato Rhizosphere , 2001, Applied and Environmental Microbiology.

[4]  G. J. Velicer Social strife in the microbial world. , 2003, Trends in microbiology.

[5]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. Lemanceau,et al.  Acyl-Homoserine Lactone Production Is More Common among Plant-Associated Pseudomonas spp. than among Soilborne Pseudomonas spp , 2001, Applied and Environmental Microbiology.

[7]  Lian-Hui Zhang,et al.  Quorum quenching enzyme activity is widely conserved in the sera of mammalian species , 2005, FEBS letters.

[8]  J. Kreft,et al.  Conflicts of interest in biofilms , 2004 .

[9]  L. Eberl,et al.  The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. , 2005, Environmental microbiology.

[10]  T. E. Cloete,et al.  Biofouling and Biocorrosion in Industrial Water Systems , 2005, Critical reviews in microbiology.

[11]  S. Kjelleberg,et al.  A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. , 2000, Environmental microbiology.

[12]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[13]  E. Greenberg,et al.  Sociomicrobiology: the connections between quorum sensing and biofilms. , 2005, Trends in microbiology.

[14]  Gholson J. Lyon,et al.  Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria , 2004, Peptides.

[15]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[17]  Bonnie L Bassler,et al.  LuxS quorum sensing: more than just a numbers game. , 2003, Current opinion in microbiology.

[18]  K. Winzer,et al.  Functional Analysis of luxS in Staphylococcus aureus Reveals a Role in Metabolism but Not Quorum Sensing , 2006, Journal of bacteriology.

[19]  E. Simms,et al.  COOPERATION IN THE RHIZOSPHERE AND THE “FREE RIDER” PROBLEM , 2003 .

[20]  P. Amarasekare Interference competition and species coexistence , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  B. Crespi The evolution of social behavior in microorganisms. , 2001, Trends in ecology & evolution.

[22]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[23]  M. Kleerebezem,et al.  Cell to cell communication by autoinducing peptides in gram-positive bacteria , 2002, Antonie van Leeuwenhoek.

[24]  Cost of cell–cell signalling in Pseudomonas aeruginosa: why it can pay to be signal-blind , 2006, Nature Reviews Microbiology.

[25]  R. Palmer,et al.  Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[27]  M. Schloter,et al.  Ecology and evolution of bacterial microdiversity. , 2000, FEMS microbiology reviews.

[28]  J. Tiedje,et al.  A Two-Species Test of the Hypothesis That Spatial Isolation Influences Microbial Diversity in Soil , 2002, Microbial Ecology.

[29]  Jared R. Leadbetter,et al.  Utilization of Acyl-Homoserine Lactone Quorum Signals for Growth by a Soil Pseudomonad and Pseudomonas aeruginosa PAO1 , 2003, Applied and Environmental Microbiology.

[30]  R. MacLean,et al.  Resource competition and social conflict in experimental populations of yeast , 2006, Nature.

[31]  P. Rainey,et al.  Evolution of cooperation and conflict in experimental bacterial populations , 2003, Nature.

[32]  S. Lewenza,et al.  Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. , 2002, Canadian journal of microbiology.

[33]  S. Kjelleberg,et al.  Off the hook--how bacteria survive protozoan grazing. , 2005, Trends in microbiology.

[34]  J. Andrews,et al.  Colonial architecture in mixed species assemblages affects AHL mediated gene expression. , 2005, FEMS microbiology letters.

[35]  M. Teplitski,et al.  Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[36]  J. Costerton,et al.  Microbial Biofilms , 2011 .

[37]  M. Surette,et al.  The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum‐sensing signal molecule , 2001, Molecular microbiology.

[38]  Miguel Cámara,et al.  LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. , 2002, Microbiology.

[39]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[40]  E. Greenberg,et al.  Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. , 2000, Methods in enzymology.

[41]  E. Greenberg,et al.  Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Jan-Ulrich Kreft,et al.  Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. , 2006, FEMS microbiology letters.

[43]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[44]  T. B. Rasmussen,et al.  Quorum sensing inhibitors: a bargain of effects. , 2006, Microbiology.

[45]  S. Kjelleberg,et al.  Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling , 1996, Journal of bacteriology.

[46]  M. Dworkin,et al.  Cell density-dependent growth of Myxococcus xanthus on casein , 1977, Journal of bacteriology.

[47]  Dale Kaiser,et al.  Dynamics of Fruiting Body Morphogenesis , 2004, Journal of bacteriology.

[48]  D. Dykhuizen Santa Rosalia revisited: Why are there so many species of bacteria? , 2004, Antonie van Leeuwenhoek.

[49]  M. Otto,et al.  Pheromone Cross-Inhibition betweenStaphylococcus aureus and Staphylococcus epidermidis , 2001, Infection and Immunity.

[50]  Carl T. Bergstrom,et al.  Cost and conflict in animal signals and human language , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Thomas P. Curtis,et al.  Estimating prokaryotic diversity and its limits , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Ned S Wingreen,et al.  Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression , 2003, The EMBO journal.

[53]  S. Pongor,et al.  Plant Growth-Promoting Pseudomonas putida WCS358 Produces and Secretes Four Cyclic Dipeptides: Cross-Talk with Quorum Sensing Bacterial Sensors , 2002, Current Microbiology.

[54]  S. Farrand,et al.  Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. , 1998, Molecular plant-microbe interactions : MPMI.

[55]  Lian-Hui Zhang,et al.  Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase , 2001, Nature.

[56]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[57]  D. Haas,et al.  Impact of quorum sensing on fitness of Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[58]  C. Kuttler,et al.  Cell–cell communication by quorum sensing and dimension-reduction , 2006, Journal of mathematical biology.

[59]  E. Greenberg,et al.  Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria , 1979, Archives of Microbiology.

[60]  V. Torsvik,et al.  High diversity in DNA of soil bacteria , 1990, Applied and environmental microbiology.

[61]  Say Leong Ong,et al.  Acyl‐homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum‐quenching enzymes , 2003, Molecular microbiology.

[62]  J. King,et al.  Mathematical modelling of quorum sensing in bacteria. , 2001, IMA journal of mathematics applied in medicine and biology.

[63]  S. C. Winans Reciprocal Regulation of Bioluminescence and Type III Protein Secretion in Vibrio harveyi and Vibrio parahaemolyticus in Response to Diffusible Chemical Signals , 2004, Journal of bacteriology.

[64]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[65]  K. Winzer,et al.  Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch! , 2002, Current opinion in microbiology.

[66]  P. Dunlap,et al.  LuxR- and Acyl-Homoserine-Lactone-Controlled Non-luxGenes Define a Quorum-Sensing Regulon in Vibrio fischeri , 2000, Journal of bacteriology.

[67]  M. Manefield,et al.  Quorum sensing in context: out of molecular biology and into microbial ecology. , 2002, Microbiology.

[68]  E. Shiner,et al.  Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. , 2005, FEMS microbiology reviews.

[69]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[70]  E. Kiers,et al.  Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. , 2004, FEMS microbiology letters.

[71]  The induction of bacterial bioluminescence system on solid medium , 1981, Current Microbiology.

[72]  L. Guy,et al.  Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death , 2005, Journal of bacteriology.

[73]  B. Bassler,et al.  Bacterial social engagements. , 2004, Trends in cell biology.

[74]  G. Dunny,et al.  Cell-cell communication in gram-positive bacteria. , 1997, Annual review of microbiology.

[75]  S. Molin,et al.  N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. , 2001, Microbiology.

[76]  G. Boşgelmez-Tinaz,et al.  Quorum Sensing in Gram-Negative Bacteria , 2003 .

[77]  J. Leadbetter,et al.  Rapid Acyl-Homoserine Lactone Quorum Signal Biodegradation in Diverse Soils , 2005, Applied and Environmental Microbiology.

[78]  S. Rice,et al.  Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria , 1999, Molecular microbiology.

[79]  A. Eberhard Inhibition and Activation of Bacterial Luciferase Synthesis , 1972, Journal of bacteriology.

[80]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[81]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[82]  Kevin R Foster,et al.  Hamiltonian Medicine: Why the Social Lives of Pathogens Matter , 2005, Science.

[83]  M. Surette,et al.  Communication in bacteria: an ecological and evolutionary perspective , 2006, Nature Reviews Microbiology.

[84]  G. Stacey,et al.  Quorum sensing in plant-associated bacteria. , 2002, Current opinion in plant biology.

[85]  J. Vanderleyden,et al.  Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet , 2004, Critical reviews in microbiology.

[86]  Tobin J Dickerson,et al.  Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Anton Hartmann,et al.  In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. , 2006, FEMS microbiology ecology.

[88]  Bonnie L. Bassler,et al.  Interference with AI-2-mediated bacterial cell–cell communication , 2005, Nature.

[89]  K. Dziewanowska,et al.  Biphasic intracellular expression of Staphylococcus aureus virulence factors and evidence for Agr‐mediated diffusion sensing , 2003, Molecular microbiology.

[90]  D. Faure,et al.  Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. , 2005, Environmental microbiology.

[91]  A. Lusis,et al.  Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Murray Wolinsky,et al.  Response to Comment by Volkov et al. on "Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil" , 2006, Science.

[93]  L. Eberl,et al.  Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. , 2006, Plant, cell & environment.

[94]  R. Johnstone,et al.  Cooperation in the dark: signalling and collective action in quorum-sensing bacteria , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  M. Travisano,et al.  Strategies of microbial cheater control. , 2004, Trends in microbiology.

[96]  Jibin Sun,et al.  Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways , 2004, BMC Evolutionary Biology.

[97]  John Bunge,et al.  Predicting microbial species richness. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[98]  G. Caetano-Anollés,et al.  Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[99]  R. Wirth,et al.  Why does Staphylococcus aureus secrete an Enterococcus faecalis-specific pheromone? , 1997, FEMS microbiology letters.

[100]  Francoise M. Blachere,et al.  Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere , 1998 .