Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems

Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.

[1]  Xiaokang Lin,et al.  Maximum Likelihood Estimation From Sign Measurements With Sensing Matrix Perturbation , 2013, IEEE Transactions on Signal Processing.

[2]  Mort Naraghi-Pour,et al.  Online detection and parameter estimation with correlated data in wireless sensor networks , 2018, 2018 IEEE Wireless Communications and Networking Conference (WCNC).

[3]  Yuan-Kang Wu,et al.  Review on model validation and parameter estimation approaches of wind power generators , 2009 .

[4]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[5]  Matthew M. Graham Auxiliary variable Markov chain Monte Carlo methods , 2018 .

[6]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[7]  Dima Bykhovsky,et al.  Numerical Generation of Compound Random Processes with an Arbitrary Autocorrelation Function , 2017 .

[8]  Mark R. Morelande,et al.  Radiological Source Detection and Localisation Using Bayesian Techniques , 2009, IEEE Transactions on Signal Processing.

[9]  Jiuping Xu,et al.  Random Set Theory , 2011 .

[10]  Scotland Leman,et al.  Weighted particle tempering , 2017, Comput. Stat. Data Anal..

[11]  John W. Fisher,et al.  Nonparametric belief propagation for self-localization of sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[12]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[13]  Faisal Baig,et al.  Utilization of Markov chain Monte Carlo approach for calibration and uncertainty analysis of environmental models , 2018, 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET).

[14]  J. Míguez,et al.  Nested particle filters for online parameter estimation in discrete-time state-space Markov models , 2013, Bernoulli.

[15]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[16]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[17]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[18]  Osman Balci,et al.  Model Reuse, Composition, and Adaptation , 2017 .

[19]  Arindam Ghosh,et al.  Intrahour Cloud Tracking Based on Probability Hypothesis Density Filtering , 2018, IEEE Transactions on Sustainable Energy.

[20]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[21]  Peng Wang,et al.  Random Finite Set Based Data Assimilation for Dynamic Data Driven Simulation of Maritime Pirate Activity , 2017 .

[22]  Jinping Sun,et al.  PHD and CPHD Filtering With Unknown Detection Probability , 2018, IEEE Transactions on Signal Processing.

[23]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[24]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[25]  M. González,et al.  Non-parametric Bayesian estimation for multitype branching processes through simulation-based methods , 2008, Comput. Stat. Data Anal..

[26]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[27]  Ronald P. S. Mahler,et al.  Particle-systems implementation of the PHD multitarget-tracking filter , 2003, SPIE Defense + Commercial Sensing.

[28]  Zhongliang Jing,et al.  Joint registration and multi-target tracking based on labelled random finite set and expectation maximisation , 2017 .

[29]  Robin Lee,et al.  Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology , 2018, 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).

[30]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[31]  Wei Chen,et al.  Research Challenges in Modeling and Simulation for Engineering Complex Systems , 2017, Simulation Foundations, Methods and Applications.

[32]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[33]  Patrick A. Naylor,et al.  Optimized Self-Localization for SLAM in Dynamic Scenes Using Probability Hypothesis Density Filters , 2018, IEEE Transactions on Signal Processing.

[34]  Klaus Neusser Estimation of the Mean and the Autocorrelation Function , 2016 .

[35]  A.S. Willsky,et al.  Nonparametric belief propagation for self-calibration in sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[36]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[37]  Feng Ding,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Trans. Autom. Control..

[38]  Hedvig Sidenbladh,et al.  Multi-target particle filtering for the probability hypothesis density , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[39]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[40]  R. Kamalapurkar,et al.  Simultaneous state and parameter estimation for second-order nonlinear systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[41]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[42]  Johan Dahlin,et al.  Sequential Monte Carlo Methods for System Identification , 2015, 1503.06058.