Vortex Waves and Channel Capacity: Hopes and Reality

Several recent contributions have envisioned the possibility of increasing currently exploitable maximum channel capacity of a free-space link, both at optical and radio frequencies, by using vortex waves, i.e., carrying orbital angular momentum (OAM). Our objective is to disprove these claims by showing that they are in contradiction with very fundamental properties of Maxwellian fields. We demonstrate that the degrees of freedom (DoFs) of the field cannot be increased by the helical phase structure of electromagnetic vortex waves beyond what can be done without invoking this property. We also show that the often-advocated over-quadratic power decay of OAM beams with distance does not play any fundamental role in the determination of the channel DoF.

[1]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[2]  Christophe Craeye,et al.  Comment on ``Encoding many channels on the same frequency through radio vorticity: first experimental test´´ , 2012 .

[3]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[4]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[5]  G. Franceschetti,et al.  On the spatial bandwidth of scattered fields , 1987 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  Fabrizio Tamburini,et al.  Twisting of light around rotating black holes , 2011, 1104.3099.

[8]  B. Thid'e,et al.  Encoding many channels on the same frequency through radio vorticity: first experimental test , 2011, 1107.2348.

[9]  W. Marsden I and J , 2012 .

[10]  Alexandre Chabory,et al.  Antenna gain and link budget for waves carrying orbital angular momentum , 2015, 1504.00289.

[11]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[12]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[13]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[14]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[15]  Martin Harwit,et al.  Photon Orbital Angular Momentum in Astrophysics , 2003, astro-ph/0307430.

[16]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[17]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[18]  Christophe Craeye,et al.  Comment on ‘Reply to Comment on “Encoding many channels on the same frequency through radio vorticity: first experimental test” ’ , 2013 .

[19]  H. Then,et al.  Utilization of photon orbital angular momentum in the low-frequency radio domain. , 2007, Physical review letters.

[20]  Joseph M. Kahn,et al.  Capacity limits of spatially multiplexed free-space communication , 2015 .

[21]  Gregor Weihs,et al.  Superpositions of the orbital angular momentum for applications in quantum experiments , 2002 .

[22]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[23]  O. Edfors,et al.  Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area? , 2012, IEEE Transactions on Antennas and Propagation.

[24]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[25]  Miller,et al.  Electromagnetic degrees of freedom of an optical system , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  L C Andrews,et al.  Spot size and divergence for Laguerre Gaussian beams of any order. , 1983, Applied optics.

[27]  D. Miller,et al.  Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. , 2000, Applied optics.

[28]  Miles Padgett,et al.  Momentum paradox in a vortex core , 2005 .

[29]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[30]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[31]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[32]  Kishan Dholakia,et al.  Is there an optimal basis to maximise optical information transfer? , 2016, Scientific Reports.

[33]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[34]  D. Grier A revolution in optical manipulation , 2003, Nature.

[35]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[36]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[37]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[38]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[39]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .