Tuning Strategy for the Proximity Parameter in Convex Minimization

We present a new bundle method in which the use of the proximal trajectory of the cutting plane function allows the automatic tuning of the proximity parameter. An updating criterion of the stability center based on the agreement between the objective function and the polyhedral model is presented. Convergence properties are provided together with some numerical results.

[1]  M. Fukushima,et al.  Globally Convergent BFGS Method for Nonsmooth Convex Optimization1 , 2000 .

[2]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[3]  A. Adamian,et al.  Approximation theory for linear-quadratic-Guassian optimal control of flexible structures , 1991 .

[4]  P. Wolfe Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .

[5]  Antonio Frangioni,et al.  Generalized Bundle Methods , 2002, SIAM J. Optim..

[6]  K. Kiwiel Finding normal solutions in piecewise linear programming , 1995 .

[7]  C. Lemaréchal An extension of davidon methods to non differentiable problems , 1975 .

[8]  Antonio Fuduli,et al.  Analysis of regularization techniques in convex nondifferentiable optimization , 1997 .

[9]  K. Kiwiel Efficiency of Proximal Bundle Methods , 2000 .

[10]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[11]  Manlio Gaudioso,et al.  Quadratic approximations in convex nondifferentiable optimization , 1991 .

[12]  Defeng Sun,et al.  Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..

[13]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[14]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[15]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[16]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[17]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[18]  Antonio Fuduli,et al.  Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..

[19]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[20]  Antonio Frangioni,et al.  Solving semidefinite quadratic problems within nonsmooth optimization algorithms , 1996, Comput. Oper. Res..

[21]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[22]  A. A. Goldstein,et al.  Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.

[23]  Masao Fukushima,et al.  A descent algorithm for nonsmooth convex optimization , 1984, Math. Program..

[24]  Antonio Fuduli,et al.  A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization , 2004, Optim. Methods Softw..

[25]  Manlio Gaudioso,et al.  A bundle type approach to the unconstrained minimization of convex nonsmooth functions , 1982, Math. Program..

[26]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[27]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[28]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .