Paths and flows: a historical survey

In 1927, the topologist Karl Menger published an article called Zur allgemeinen Kurventheorie (On the general theory of curves), in which he stated a remarkable result, now one of the most fundamental results in graph theory: Satz. Ist K ein kompakter regull ar eindimensionaler Raum, welcher zwi-schen den beiden endlichen Mengen P und Q n-punktig zusammenhh angend ist, dann enthh alt K n paarweise fremde BB ogen, von denen jeder einen Punkt von P und einen Punkt von Q verbindet.

[1]  Alexander W. Boldyreff,et al.  Determination of the Maximal Steady State Flow of Traffic Through a Railroad Network , 1955, Oper. Res..

[2]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[3]  Eine Verschärfung des n-Beinsatzes , 1932 .

[4]  Sui punti regolari nelle curve di Jordan , 1929 .

[5]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[6]  Karl Menger,et al.  On the origin of the n-arc theorem , 1981, J. Graph Theory.

[7]  T. Koopmans,et al.  Activity Analysis of Production and Allocation. , 1952 .

[8]  Norman E. Rutt Concerning the Cut Points of a Continuous Curve when the Arc Curve, AB, Contains Exactly N Independent Arcs , 1929 .

[9]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[10]  D. R. Fulkerson,et al.  A Simple Algorithm for Finding Maximal Network Flows and an Application to the Hitchcock Problem , 1957, Canadian Journal of Mathematics.

[11]  L. Vietoris Theorie der endlichen und unendlichen Graphen , 1937 .

[12]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[13]  M. L. Juncosa,et al.  Optimal Design and Utilization of Communication Networks , 1956 .

[14]  B. Rothschild,et al.  Feasibility of Two Commodity Network Flows , 1966, Oper. Res..

[15]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[16]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[17]  John E. Hopcroft,et al.  The Directed Subgraph Homeomorphism Problem , 1978, Theor. Comput. Sci..

[18]  James F. Lynch,et al.  The equivalence of theorem proving and the interconnection problem , 1975, SIGD.

[19]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[20]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[21]  Journal of the Association for Computing Machinery , 1961, Nature.