On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models.

The use of a coarse-grained (CG) model that is widely used in molecular dynamics simulations of biomolecular systems is investigated with respect to the dependence of a variety of quantities upon the size of the used integration time step and cutoff radius. The results suggest that when using a non-bonded interaction-cutoff radius of 1.4 nm a time step of maximally 10 fs should be used, in order not to produce energy sinks or wells. Using a too-large time step, e.g. 50 fs with a cutoff of 1.2 nm, as is done in the coarse-grained model of Marrink et al. (J. Phys. Chem. B, 2004, 108, 250 and 2007, 111, 7812), induces errors due to the linear approximation of the integrators that are commonly used to integrate the equations of motion. As a spin-off of the investigation of the mentioned CG models, we found that the parameters of the CG water model place it at physiological temperatures well into the solid phase of the phase diagram.

[1]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[2]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[3]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[4]  D. Tildesley,et al.  On the role of hydrodynamic interactions in block copolymer microphase separation , 1999 .

[5]  D. J. Tildesley,et al.  Equation of state for the Lennard-Jones fluid , 1979 .

[6]  Wilfred F van Gunsteren,et al.  Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates. , 2006, The journal of physical chemistry. B.

[7]  Syma Khalid,et al.  Coarse-grained molecular dynamics simulations of membrane proteins and peptides. , 2007, Journal of structural biology.

[8]  Reinhard Lipowsky,et al.  Computer simulations of bilayer membranes - self-assembly and interfacial tension. , 1998 .

[9]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[10]  H. Berendsen,et al.  Molecular Dynamics Simulations: Techniques and Approaches , 1984 .

[11]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[12]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[13]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[14]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[15]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[16]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[17]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[18]  Kurt Kremer,et al.  Computer simulations for macromolecular science , 2003 .

[19]  Gerhard Hummer,et al.  Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. , 2008, Journal of molecular biology.

[20]  Masuhiro Mikami,et al.  A coarse-grained model for particle dynamics simulations of complex fluids , 2003 .

[21]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[22]  J. Padding,et al.  Mechanical properties of surfactant bilayer membranes from atomistic and coarse-grained molecular dynamics simulations. , 2005, Journal of Physical Chemistry B.

[23]  Gregory A Voth,et al.  The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. , 2008, The Journal of chemical physics.

[24]  Wilfred F van Gunsteren,et al.  Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[26]  Peter J Bond,et al.  Insertion and assembly of membrane proteins via simulation. , 2006, Journal of the American Chemical Society.

[27]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[28]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[29]  Michael L. Klein,et al.  A coarse grain model for n-alkanes parameterized from surface tension data , 2003 .

[30]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[31]  Andrew E. Torda,et al.  Parametrisation of time-averaged distance restraints in MD simulations , 1995, Journal of biomolecular NMR.

[32]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[33]  Wilfred F van Gunsteren,et al.  On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. , 2007, The Journal of chemical physics.