On Quantum Effects in a Theory of Biological Evolution

We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable.

[1]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Cristian S. Calude,et al.  Coins, Quantum Measurements, and Turing's Barrier , 2002, Quantum Inf. Process..

[3]  V. Roychowdhury,et al.  On Universal and Fault-Tolerant Quantum Computing , 1999, quant-ph/9906054.

[4]  T. Rado On non-computable functions , 1962 .

[5]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[6]  Gregory J. Chaitin,et al.  The Limits of Mathematics , 1995, J. Univers. Comput. Sci..

[7]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[8]  Cristian S. Calude,et al.  Computing a Glimpse of Randomness , 2002, Exp. Math..

[9]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[10]  Karl Svozil Halting Probability Amplitude Quantum Computers , 1995, J. Univers. Comput. Sci..

[11]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[12]  Karl Svozil Quantum algorithmic information theory , 1995 .

[13]  Gregory Chaitin,et al.  Life as Evolving Software , 2012 .

[14]  C. Mora,et al.  ALGORITHMIC COMPLEXITY OF QUANTUM STATES , 2004 .

[15]  P. Oscar Boykin,et al.  A new universal and fault-tolerant quantum basis , 2000, Inf. Process. Lett..

[16]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[17]  G. Chaitin To a Mathematical Theory of Evolution and Biological Creativity , 2011 .

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[19]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[20]  Tien D. Kieu Quantum adiabatic algorithm for Hilbert's tenth problem: I. The algorithm , 2003 .

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[23]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[24]  Sophie Laplante,et al.  Quantum Kolmogorov complexity , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[25]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[26]  Péter Gács,et al.  Quantum algorithmic entropy , 2000, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[27]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[28]  H. Briegel,et al.  Algorithmic complexity and entanglement of quantum states. , 2005, Physical review letters.

[29]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[30]  Tien D. Kieu,et al.  Quantum Algorithm for Hilbert's Tenth Problem , 2001, ArXiv.

[31]  Gregory. J. Chaitin,et al.  Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.

[32]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[33]  R. Feynman Simulating physics with computers , 1999 .

[34]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[35]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[36]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[37]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[38]  Paul M. B. Vitányi,et al.  Three approaches to the quantitative definition of information in an individual pure quantum state , 1999, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[39]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[40]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[41]  B. Kraus,et al.  QUANTUM KOLMOGOROV COMPLEXITY AND ITS APPLICATIONS , 2006 .