Challenges and prospects of nanopillar-based solar cells

Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.

[1]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[2]  A. Javey The 2008 Kavli Prize in Nanoscience: carbon nanotubes. , 2008, ACS nano.

[3]  A. Sabbah,et al.  Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared , 2000 .

[4]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Charles M. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[6]  Neil Robertson,et al.  Optimizing dyes for dye-sensitized solar cells. , 2006, Angewandte Chemie.

[7]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[8]  K. Van Nieuwenhuysen,et al.  Epitaxial thin-film Si solar cells , 2006 .

[9]  Jens Bauer,et al.  VLS growth of GaN nanowires on various substrates , 2008 .

[10]  A. I. Savchuk,et al.  Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure , 2009 .

[11]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[12]  P. Dawson,et al.  Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells , 2000 .

[13]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[14]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[15]  Anders Hagfeldt,et al.  A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes , 2002 .

[16]  Zhiyong Fan,et al.  Photoluminescence and polarized photodetection of single ZnO nanowires , 2004 .

[17]  Fumin Wang,et al.  Highly Efficient Dye-sensitized Solar Cells Based on Single Crystalline TiO2 Nanorod Film , 2005 .

[18]  Michael Grätzel,et al.  Gallium arsenide p-i-n radial structures for photovoltaic applications , 2009 .

[19]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[20]  Dong Young Kim,et al.  TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells , 2005 .

[21]  A. Radenović,et al.  ZnO-Al 2 O 3 and ZnO-TiO 2 Core-Shell Nanowire Dye-Sensitized Solar Cells , 2006 .

[22]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[23]  S. T. Lee,et al.  Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. , 2008, Nano letters.

[24]  K. Tennakone,et al.  Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials , 2004 .

[25]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[26]  Akihiro Furube,et al.  Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[27]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[28]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[29]  Shihe Yang,et al.  Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells , 2005 .

[30]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[31]  K. Lew,et al.  Diameter-dependent composition of vapor-liquid-solid grown Si(1-x)Ge(x) nanowires. , 2007, Nano letters.

[32]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[33]  Hans Zogg,et al.  Bifacial configurations for CdTe solar cells , 2007 .

[34]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[35]  K. Tennakone,et al.  An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc , 1999 .

[36]  Arie Zaban,et al.  Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode , 2004 .

[37]  Zhiyong Fan,et al.  Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry , 2008, Proceedings of the National Academy of Sciences.

[38]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[39]  C. Bignozzi,et al.  Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. , 2005, Journal of the American Chemical Society.

[40]  B. Wang,et al.  Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation , 2003 .

[41]  Sylvain Marsillac,et al.  Ultra-thin bifacial CdTe solar cell , 2007 .

[42]  H. Hng,et al.  A Simple Chemical Approach for PbTe Nanowires with Enhanced Thermoelectric Properties , 2008 .

[43]  Jenny Nelson,et al.  Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodes , 1999 .

[44]  L. Jastrzebski,et al.  Application of scanning electron microscopy to determination of surface recombination velocity: GaAs , 1975 .

[45]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[46]  J. Kwo,et al.  Recombination velocity at oxide–GaAs interfaces fabricated by in situ molecular beam epitaxy , 1996 .

[47]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[48]  Rowe,et al.  Picosecond photoelectron spectroscopy of excited states at Si(111) sqrt 3 x sqrt 3 R30 degrees-B, Si(111)7 x 7, Si(100)2 x 1, and laser-annealed Si(111)1 x 1 surfaces. , 1993, Physical Review B (Condensed Matter).

[49]  Torsten Oekermann,et al.  Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization , 2004 .

[50]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[51]  J. Hupp,et al.  Radial electron collection in dye-sensitized solar cells. , 2008, Nano letters.

[52]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[53]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[54]  K. Tennakone,et al.  Enhanced Efficiency of a Dye-Sensitized Solar Cell Made from MgO-Coated Nanocrystalline SnO2 , 2001 .

[55]  Emilio Palomares,et al.  Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. , 2005, The journal of physical chemistry. B.

[56]  Po-Chiang Chen,et al.  Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures , 2008, IEEE Transactions on Nanotechnology.

[57]  Supratik Guha,et al.  Characteristics of vapor–liquid–solid grown silicon nanowire solar cells , 2009 .

[58]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[59]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[60]  P. K. Larsen,et al.  Thin‐film GaAs epitaxial lift‐off solar cells for space applications , 2005 .

[61]  E. Lind,et al.  Development of a Vertical Wrap-Gated InAs FET , 2008, IEEE Transactions on Electron Devices.

[62]  Arthur J. Frank,et al.  Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .

[63]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[64]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[65]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[66]  Y. Rosenwaks,et al.  Effects of reactive versus unreactive metals on the surface recombination velocity at CdS and CdSe(112̄0) interfaces , 1990 .

[67]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[68]  G. Beaucarne,et al.  Epitaxially grown emitters for thin film crystalline silicon solar cells , 2008 .

[69]  Helmut Stiebig,et al.  Silicon thin‐film solar cells with rectangular‐shaped grating couplers , 2006 .

[70]  T. Tseng,et al.  Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process , 2004 .

[71]  Arie Zaban,et al.  Bilayer nanoporous electrodes for dye sensitized solar cells , 2000 .

[72]  S. Juodkazis,et al.  Aluminum Oxide Photonic Crystals Grown by a New Hybrid Method , 2001 .

[73]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[74]  Anders Hagfeldt,et al.  High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes , 1997 .

[75]  Daihua Zhang,et al.  Detection of NO 2 down to ppb Levels Using Individual and Multiple In 2 O 3 Nanowire Devices , 2022 .

[76]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[77]  Ladislav Kavan,et al.  Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. , 2005, Nano letters.

[78]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[79]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[80]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.

[81]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[82]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[83]  D. Wang,et al.  Germanium nanowires: from synthesis, surface chemistry, and assembly to devices , 2006, 2006 64th Device Research Conference.

[84]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[85]  Zhiyong Fan,et al.  Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays , 2006 .

[86]  Hidetoshi Miura,et al.  High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. , 2004, Journal of the American Chemical Society.

[87]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[88]  K. Tennakone,et al.  Enhanced Efficiency of a Dye-Sensitized Solar Cell Made from MgO-Coated Nanocrystalline SnO_2 : Semiconductors , 2001 .

[89]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[90]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[91]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[92]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.