Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

[1]  Xinyi Dou,et al.  Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data , 2017, Hydrogeology Journal.

[2]  Gerd Vandersteen,et al.  LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer , 2016 .

[3]  M. Cardenas,et al.  Temperature effects on nitrogen cycling and nitrate removal‐production efficiency in bed form‐induced hyporheic zones , 2016 .

[4]  G. Vandersteen,et al.  From streambed temperature measurements to spatial‐temporal flux quantification: using the LPML method to study groundwater–surface water interaction , 2016 .

[5]  P. Willems,et al.  Multi-model approach to assess the impact of climate change on runoff , 2015 .

[6]  M. Bayani Cardenas,et al.  Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus , 2015 .

[7]  G. Vandersteen,et al.  Determining groundwater‐surface water exchange from temperature‐time series: Combining a local polynomial method with a maximum likelihood estimator , 2015 .

[8]  R. González‐Pinzón,et al.  A field comparison of multiple techniques to quantify groundwater–surface-water interactions , 2015, Freshwater Science.

[9]  Roberto Revelli,et al.  Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications , 2014 .

[10]  André St-Hilaire,et al.  Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover , 2014 .

[11]  J. Fleckenstein,et al.  A method for automated, daily, temperature-based vertical streambed water-fluxes , 2014 .

[12]  G. Vandersteen,et al.  Determining Groundwater-Surface Water Exchange Fluxes and Their Spatial Variability Using the Local Polynomial Method LPML , 2014 .

[13]  Richard Healy,et al.  1DTempPro: Analyzing Temperature Profiles for Groundwater/Surface‐water Exchange , 2014, Ground water.

[14]  Gabriel C. Rau,et al.  Heat as a tracer to quantify water flow in near-surface sediments , 2014 .

[15]  A. Wörman,et al.  Spectral scaling of heat fluxes in streambed sediments , 2012 .

[16]  Charles H. Luce,et al.  Solutions for the diurnally forced advection‐diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series , 2012 .

[17]  Laura K. Lautz,et al.  Ampliação da escala de traçagem pontual de calor de fluxo da drenância usando temperaturas de camadas como um indicador quantitativo , 2012, Hydrogeology Journal.

[18]  L. Lautz,et al.  Scaling up point-in-space heat tracing of seepage flux using bed temperatures as a quantitative proxy , 2012 .

[19]  J. Chormański,et al.  A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland , 2011 .

[20]  D. Hannah,et al.  Interstitial pore‐water temperature dynamics across a pool‐riffle‐pool sequence , 2011 .

[21]  G. Ferguson,et al.  Uncertainty in 1D Heat‐Flow Analysis to Estimate Groundwater Discharge to a Stream , 2011, Ground water.

[22]  S. Stadler,et al.  Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone , 2011 .

[23]  O. Batelaan,et al.  A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction , 2011 .

[24]  J. Fleckenstein,et al.  Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures — Implications for temperature-based water flux calculations , 2010 .

[25]  J. Lewandowski,et al.  Nutrient retention and release in a floodplain's aquifer and in the hyporheic zone of a lowland river , 2010 .

[26]  G. Rau,et al.  Analytical methods that use natural heat as a tracer to quantify surface water–groundwater exchange, evaluated using field temperature records , 2010 .

[27]  Rainer Harms,et al.  Dealing With Spatial Heterogeneity in Entrepreneurship Research , 2010 .

[28]  L. Lautz Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series , 2010 .

[29]  Patrick Meire,et al.  Transient or steady‐state? Using vertical temperature profiles to quantify groundwater–surface water exchange , 2009 .

[30]  A. Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[31]  T. Beechie,et al.  Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems , 2008 .

[32]  Jim Constantz,et al.  Heat as a tracer to determine streambed water exchanges , 2008 .

[33]  B. Conant,et al.  Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures , 2007 .

[34]  P. Meire,et al.  Fundamentele studie van uitwisselingsprocessen in rivierecosystemen - Geïntegreerde modelontwikkeling , 2007 .

[35]  F. Reinstorf,et al.  Measuring methods for groundwater – surface water interactions: a review , 2006 .

[36]  J. Harvey,et al.  Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA , 2006 .

[37]  Mary P Anderson,et al.  Heat as a Ground Water Tracer , 2005, Ground water.

[38]  Andrew J. Boulton,et al.  Aquifers and hyporheic zones: Towards an ecological understanding of groundwater , 2005 .

[39]  D. Hannah,et al.  Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub‐seasonal dynamics , 2004 .

[40]  R. Gillham,et al.  A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. , 2004, Journal of contaminant hydrology.

[41]  Karline Soetaert,et al.  FEMME, a flexible environment for mathematically modelling the environment , 2002 .

[42]  Emily H. Stanley,et al.  THE FUNCTIONAL SIGNIFICANCE OF THE HYPORHEIC ZONE IN STREAMS AND RIVERS , 1998 .

[43]  A. Elliott,et al.  Transfer of nonsorbing solutes to a streambed with bed forms: Theory , 1997 .

[44]  Stephen E. Silliman,et al.  Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature , 1995 .

[45]  Stephen E. Silliman,et al.  Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana , 1993 .

[46]  G. W. Zellweger,et al.  Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage , 1990 .

[47]  J. Stanford,et al.  The hyporheic habitat of river ecosystems , 1988, Nature.

[48]  R. Stallman Steady one‐dimensional fluid flow in a semi‐infinite porous medium with sinusoidal surface temperature , 1965 .

[49]  J. D. Bredehoeft,et al.  Rates of vertical groundwater movement estimated from the Earth's thermal profile , 1965 .

[50]  L. Lautz,et al.  Using Diurnal Temperature Signals to Infer Vertical Groundwater‐Surface Water Exchange , 2017, Ground water.

[51]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: Preface , 2009 .

[52]  O. Batelaan,et al.  Determination of groundwater fluxes in the Belgian Aa River by sensing and simulation of streambed temperatures , 2008 .

[53]  Darrell I. Leap,et al.  Using solver to determine vertical groundwater velocities by temperature variations, Purdue University, Indiana, USA , 2006 .

[54]  P. Domenico,et al.  Physical and chemical hydrogeology , 1990 .

[55]  Wayne W. Lapham,et al.  Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity , 1989 .