Crop Type Discrimination and Health Assessment using Hyperspectral Imaging

Rahul Nigam*, Rojalin Tripathy, Sujay Dutta, Nita Bhagia, Rohit Nagori, K. Chandrasekar, Rajsi Kot, Bimal K. Bhattacharya and Susan Ustin Agriculture and Land Eco-system Division, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre (ISRO), Ahmedabad 380 015, India National Remote Sensing Centre (ISRO), Hyderabad 500 037, India M.G. Science Institute, Ahmedabad 380 009, India Environmental and Resource Sciences, University of California, Davis, CA 95616, USA

[1]  I. Sandholt,et al.  A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status , 2002 .

[2]  Davoud Ashourloo,et al.  Developing Two Spectral Disease Indices for Detection of Wheat Leaf Rust (Pucciniatriticina) , 2014, Remote. Sens..

[3]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Roberta E. Martin,et al.  Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels , 2008 .

[5]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[6]  C. Yonezawa Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery , 2007 .

[7]  T. Jackson,et al.  Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands , 2005 .

[8]  D. P. Turner,et al.  Scaling net primary production to a MODIS footprint in support of Earth observing system product validation , 2004 .

[9]  Nataliia Kussul,et al.  Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[10]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[11]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[12]  A. Gitelson,et al.  Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶ , 2002, Photochemistry and photobiology.

[13]  Pablo J. Zarco-Tejada,et al.  Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) , 2013 .

[14]  Jun Li,et al.  Regional Clustering-Based Spatial Preprocessing for Hyperspectral Unmixing , 2018 .

[15]  Robert A. Schowengerdt,et al.  A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery , 1995 .

[16]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[17]  Simon J. Hook,et al.  Linking seasonal foliar traits to VSWIR-TIR spectroscopy across California ecosystems , 2016 .

[18]  J. M. Bremner Determination of nitrogen in soil by the Kjeldahl method , 1960, The Journal of Agricultural Science.

[19]  D. Tanré,et al.  Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS , 1996 .

[20]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[21]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[22]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[23]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[24]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[25]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[26]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[27]  C. Woodcock,et al.  Resolution dependent errors in remote sensing of cultivated areas , 2006 .

[28]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[29]  M. Hardisky The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of Spartina alterniflora Canopies , 2008 .

[30]  Christopher B. Field,et al.  Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves☆ , 1994 .

[31]  Paul V. Bolstad,et al.  Semi-automated training approaches for spectral class definition , 1992 .

[32]  Wei Huang,et al.  A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results , 2004 .

[33]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[34]  N. Elliott,et al.  Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat , 2007 .

[35]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[36]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[37]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[38]  G. Birth,et al.  Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1 , 1968 .

[39]  J. Peñuelas,et al.  Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .

[40]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[41]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[42]  W. R. Windham,et al.  Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. , 1995, Tree physiology.

[43]  Manuel A. Aguilar,et al.  GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments , 2013 .