A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

This paper presents a theoretical and experimental comparison of sound proof rules for proving invariance of algebraic sets, that is, sets satisfying polynomial equalities, under the flow of polynomial ordinary differential equations. Problems of this nature arise in formal verification of continuous and hybrid dynamical systems, where there is an increasing need for methods to expedite formal proofs. We study the trade-off between proof rule generality and practical performance and evaluate our theoretical observations on a set of heterogeneous benchmarks. The relationship between increased deductive power and running time performance of the proof rules is far from obvious; we discuss and illustrate certain classes of problems where this relationship is interesting.

[1]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[2]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[3]  Robert McNaughton Review: Alfred Tarski, A decision method for elementary algebra and geometry , 1953 .

[4]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[5]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[6]  P. Hartman Ordinary Differential Equations , 1965 .

[7]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[8]  Edmund M. Clarke,et al.  Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..

[9]  A Pettorossi Automata theory and formal languages , 2008 .

[10]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[11]  Jaume Llibre,et al.  Qualitative Theory of Planar Differential Systems , 2006 .

[12]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[13]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[14]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[15]  Masaya Yamaguti,et al.  Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1993 .

[16]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[17]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[18]  André Platzer,et al.  A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.

[19]  Thomas Sturm,et al.  Simplification of Quantifier-Free Formulae over Ordered Fields , 1997, J. Symb. Comput..

[20]  Ashish Tiwari,et al.  Abstractions for hybrid systems , 2008, Formal Methods Syst. Des..

[21]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[22]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..

[23]  André Platzer,et al.  Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations , 2014, SAS.

[24]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[25]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[26]  André Platzer,et al.  The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..

[27]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[28]  Naijun Zhan,et al.  Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[29]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[30]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[31]  Ernst W. Mayr,et al.  Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.

[32]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[33]  André Platzer,et al.  Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.

[34]  Ashish Tiwari,et al.  Deductive Verification of Continuous Dynamical Systems , 2009, FSTTCS.

[35]  Peter Jonsson,et al.  Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..

[36]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[37]  Arnaldo Vieira Moura,et al.  Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods , 2010, SAS.

[38]  Zili Wu,et al.  Tangent cone and contingent cone to the intersection of two closed sets , 2010 .