A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets
暂无分享,去创建一个
[1] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[2] André Platzer,et al. The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[3] Robert McNaughton. Review: Alfred Tarski, A decision method for elementary algebra and geometry , 1953 .
[4] Franco Blanchini,et al. Set-theoretic methods in control , 2007 .
[5] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[6] P. Hartman. Ordinary Differential Equations , 1965 .
[7] André Platzer,et al. Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.
[8] Edmund M. Clarke,et al. Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..
[9] A Pettorossi. Automata theory and formal languages , 2008 .
[10] Marie-Françoise Roy,et al. On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .
[11] Jaume Llibre,et al. Qualitative Theory of Planar Differential Systems , 2006 .
[12] Daniel Richardson,et al. Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.
[13] George E. Collins,et al. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.
[14] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[15] Masaya Yamaguti,et al. Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1993 .
[16] S. Lie,et al. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .
[17] Mitio Nagumo. Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .
[18] André Platzer,et al. A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.
[19] Thomas Sturm,et al. Simplification of Quantifier-Free Formulae over Ordered Fields , 1997, J. Symb. Comput..
[20] Ashish Tiwari,et al. Abstractions for hybrid systems , 2008, Formal Methods Syst. Des..
[21] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[22] Henny B. Sipma,et al. Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..
[23] André Platzer,et al. Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations , 2014, SAS.
[24] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[25] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[26] André Platzer,et al. The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..
[27] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[28] Naijun Zhan,et al. Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).
[29] G. Darboux,et al. Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .
[30] A. Goriely. Integrability and Nonintegrability of Dynamical Systems , 2001 .
[31] Ernst W. Mayr,et al. Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.
[32] André Platzer,et al. Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..
[33] André Platzer,et al. Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.
[34] Ashish Tiwari,et al. Deductive Verification of Continuous Dynamical Systems , 2009, FSTTCS.
[35] Peter Jonsson,et al. Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..
[36] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[37] Arnaldo Vieira Moura,et al. Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods , 2010, SAS.
[38] Zili Wu,et al. Tangent cone and contingent cone to the intersection of two closed sets , 2010 .