Co-evolution analysis on endocrine research

[1]  S. Chun,et al.  Extracellular Loop 3 (EL3) and EL3-Proximal Transmembrane Helix 7 of the Mammalian Type I and Type II Gonadotropin-Releasing Hormone (GnRH) Receptors Determine Differential Ligand Selectivity to GnRH-I and GnRH-II , 2005, Molecular Pharmacology.

[2]  Christof Niehrs,et al.  Fibroblast growth factor signaling during early vertebrate development. , 2005, Endocrine reviews.

[3]  Wayne A. Hendrickson,et al.  Structure of human follicle-stimulating hormone in complex with its receptor , 2005, Nature.

[4]  E. Koonin,et al.  Conservation and coevolution in the scale-free human gene coexpression network. , 2004, Molecular biology and evolution.

[5]  K. H. Wolfe,et al.  Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse. , 2004, Genome Research.

[6]  N. Farid,et al.  Minireview: structural and functional evolution of the thyrotropin receptor. , 2004, Endocrinology.

[7]  See-Kiong Ng,et al.  ADVICE: Automated Detection and Validation of Interaction by Co-Evolution , 2004, Nucleic Acids Res..

[8]  A. E. Hirsh,et al.  Coevolution of gene expression among interacting proteins , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Favrel,et al.  Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. , 2004, Developmental and comparative immunology.

[10]  C. Niehrs,et al.  Transcriptional regulation of BMP4 synexpression in transgenic Xenopus , 2004, The EMBO journal.

[11]  Rama Ranganathan,et al.  Structural Determinants of Allosteric Ligand Activation in RXR Heterodimers , 2004, Cell.

[12]  Alfonso Valencia,et al.  Identification of amino acid residues crucial for chemokine receptor dimerization , 2004, Nature Immunology.

[13]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[14]  S. Hsu New insights into the evolution of the relaxin–LGR signaling system , 2003, Trends in Endocrinology & Metabolism.

[15]  David W Ussery,et al.  Strand misalignments lead to quasipalindrome correction. , 2003, Trends in genetics : TIG.

[16]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[17]  J. C. Belmonte,et al.  MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb , 2003, Nature Cell Biology.

[18]  B. Snel,et al.  Predicting gene function by conserved co-expression. , 2003, Trends in genetics : TIG.

[19]  Dominique Zelus,et al.  Rapid divergence of the ecdysone receptor in Diptera and Lepidoptera suggests coevolution between ECR and USP-RXR. , 2003, Molecular biology and evolution.

[20]  Chern-Sing Goh,et al.  Co-evolutionary analysis reveals insights into protein-protein interactions. , 2002, Journal of molecular biology.

[21]  M. Ristow,et al.  The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. , 2002, Human molecular genetics.

[22]  M. Adams,et al.  Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  U. Vitt,et al.  Bone Morphogenetic Protein Receptor Type II Is a Receptor for Growth Differentiation Factor-91 , 2002, Biology of reproduction.

[24]  A. Valencia,et al.  In silico two‐hybrid system for the selection of physically interacting protein pairs , 2002, Proteins.

[25]  Charles DeLisi,et al.  Identifying functional links between genes using conserved chromosomal proximity. , 2002, Trends in genetics : TIG.

[26]  Jianzhi Zhang,et al.  Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Orth,et al.  Large-scale analysis of the human and mouse transcriptomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Graham J. G. Upton,et al.  Dimerization of G-protein-coupled receptors. , 2001, Journal of medicinal chemistry.

[29]  P Bork,et al.  The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly. , 2001, Human molecular genetics.

[30]  Georgios G. Gkoutos,et al.  Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. , 2001, Protein engineering.

[31]  K. Makova,et al.  Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. , 2001, Molecular biology and evolution.

[32]  A. Hsueh,et al.  Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor , 2001, Nature Medicine.

[33]  U. Ernsberger Evidence for an evolutionary conserved role of bone morphogenetic protein growth factors and phox2 transcription factors during noradrenergic differentiation of sympathetic neurons. Induction of a putative synexpression group of neurotransmitter-synthesizing enzymes. , 2000, European journal of biochemistry.

[34]  V. Laudet,et al.  Ligand binding and nuclear receptor evolution , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  F. Cohen,et al.  Co-evolution of proteins with their interaction partners. , 2000, Journal of molecular biology.

[36]  C. Niehrs,et al.  Synexpression groups in eukaryotes , 1999, Nature.

[37]  B. Rost,et al.  Effective use of sequence correlation and conservation in fold recognition. , 1999, Journal of molecular biology.

[38]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[39]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[40]  S Kumar,et al.  Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-beta family ligands, receptors and Smad signal transducers. , 1999, Genetics.

[41]  W R Taylor,et al.  Coevolving protein residues: maximum likelihood identification and relationship to structure. , 1999, Journal of molecular biology.

[42]  P. Bork,et al.  Measuring genome evolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Osborne,et al.  Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[45]  K. J. Fryxell,et al.  The coevolution of gene family trees. , 1996, Trends in genetics : TIG.

[46]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[47]  August B. Smit,et al.  Co-evolution of Ligand-Receptor Pairs in the Vasopressin/Oxytocin Superfamily of Bioactive Peptides (*) , 1996, The Journal of Biological Chemistry.

[48]  C. Sander,et al.  Correlated mutations and residue contacts in proteins , 1994, Proteins.

[49]  R. Campbell,et al.  Co-evolution of ligand-receptor pairs , 1994, Nature.

[50]  G. Dover Observing development through evolutionary eyes: a practical approach. , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  K. Umesono,et al.  Determinants of target gene specificity for steroid/thyroid hormone receptors , 1989, Cell.

[52]  R. Flavell,et al.  Molecular coevolution: DNA divergence and the maintenance of function , 1984, Cell.

[53]  P. Raven,et al.  BUTTERFLIES AND PLANTS: A STUDY IN COEVOLUTION , 1964 .

[54]  K. Holsinger The neutral theory of molecular evolution , 2004 .

[55]  Marta Filizola,et al.  Structural models for dimerization of G-protein coupled receptors: the opioid receptor homodimers. , 2002, Biopolymers.