Thermo-economic analysis of two novel low grade sensible heat driven desalination processes

Abstract Two novel desalination processes that utilise low grade sensible heat sources have been modelled and both have been shown to be more thermally efficient means of desalinating water than conventional Multi Effect Distillation (MED). The novel Boosted MED (B-MED) and Flash Boosted MED (FB-MED) processes are capable of higher production rates than conventional MED, enabled by the addition of process components and by an increase in specific electrical power consumption. A simple method of estimating the capital and operational costs of MED, B-MED and FB-MED desalination installations is presented. A generalised comparison of the economics of these three processes is conducted, asserting the economic viability of the novel desalination processes.

[1]  Kyaw Thu,et al.  Life-cycle cost analysis of adsorption cycles for desalination , 2010 .

[2]  Klaus Regenauer-Lieb,et al.  Boosted Multi-Effect Distillation for sensible low-grade heat sources: A comparison with feed pre-heating Multi-Effect Distillation , 2015 .

[3]  Hassan E.S. Fath,et al.  Thermo-economic investigation of multi effect evaporation (MEE) and hybrid multi effect evaporation—multi stage flash (MEE-MSF) systems , 2006 .

[4]  C. Sommariva,et al.  Optimization of material selection for evaporative desalination plants in order to achieve the highest cost-benefit ratio , 1999 .

[5]  Lawrence L. Kazmerski,et al.  Renewable Energy Opportunities in Water Desalination , 2011 .

[6]  M. Al-Shammiri,et al.  Multi-effect distillation plants: state of the art , 1999 .

[7]  Akili D. Khawaji,et al.  Advances in seawater desalination technologies , 2008 .

[8]  A. Badiru,et al.  Computational Economic Analysis for Engineering and Industry , 2007 .

[9]  Emilio Padilla,et al.  Technical note: Equivalence of different profitability criteria with the net present value , 2013 .

[10]  Ali M. El-Nashar,et al.  The economic feasibility of small solar MED seawater desalination plants for remote arid areas , 2001 .

[11]  R. Einav,et al.  The footprint of the desalination processes on the environment , 2003 .

[12]  Hideharu Yanagi,et al.  Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype , 2013 .

[13]  I. Karagiannis,et al.  Water desalination cost literature: review and assessment , 2008 .

[14]  Noam Lior,et al.  Advances in water desalination , 2013 .

[15]  Klaus Regenauer-Lieb,et al.  Application of the Boosted MED process for low-grade heat sources — A pilot plant , 2015 .

[16]  Klaus Regenauer-Lieb,et al.  A novel process for low grade heat driven desalination , 2014 .

[17]  Muhammad Wakil Shahzad,et al.  An emerging hybrid multi-effect adsorption desalination system , 2014 .

[18]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[19]  Klaus Regenauer-Lieb,et al.  Thermodynamic optimisation of multi effect distillation driven by sensible heat sources , 2014 .

[20]  H. Ettouney,et al.  Fundamentals of Salt Water Desalination , 2002 .

[21]  No-Suk Park,et al.  An economic analysis of desalination for potential application in Korea , 1997 .

[22]  Soteris A. Kalogirou,et al.  Seawater desalination using renewable energy sources , 2005 .

[23]  Hassan E.S. Fath,et al.  Exergy and thermoeconomic evaluation of MSF process using a new visual package , 2006 .

[24]  J. Delong,et al.  Current Demographics Suggest Future Energy Supplies Will Be Inadequate to Slow Human Population Growth , 2010, PloS one.

[25]  Noreddine Ghaffour,et al.  Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability , 2013 .

[26]  O. J. Morin,et al.  Design and operating comparison of MSF and MED systems , 1993 .

[27]  P. Fiorini,et al.  Thermoeconomic analysis of a MSF desalination plant , 2005 .

[28]  Roberto Borsani,et al.  Fundamentals and costing of MSF desalination plants and comparison with other technologies , 2005 .

[29]  Hassan E.S. Fath,et al.  Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process , 2008 .

[30]  Walid El-Mudir,et al.  Performance evaluation of a small size TVC desalination plant , 2004 .

[31]  Donald G. Newnan Engineering Economic Analysis , 2017 .

[32]  Gary L. Amy,et al.  A hybrid multi-effect distillation and adsorption cycle , 2013 .

[33]  Kyaw Thu,et al.  Numerical simulation and performance investigation of an advanced adsorption desalination cycle , 2013 .

[34]  Neil M. Wade,et al.  Distillation plant development and cost update , 2001 .

[35]  Kamel Hooman,et al.  Low grade heat driven multi-effect distillation technology , 2011 .

[36]  Seung Jin Oh,et al.  Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles , 2015 .

[37]  C. Colby,et al.  Estimating the cost of desalination plants using a cost database , 2008 .

[38]  Muhammad Wakil Shahzad,et al.  Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method , 2014 .

[39]  Xiaolin Wang,et al.  Low-grade waste heat driven desalination technology , 2014 .