Fault diagnostics and fault tolerant control

A novel simultaneous fault detection and diagnostics (FDD) and fault tolerant control (FTC) strategy for nonlinear stochastic systems in closed loops based on a continuous stirred tank reactor (CSTR) is presented. The purpose of control is to track the reactant concentration setpoint. Instead of output feedback we propose here to use proportional-integral-derivative (PID) state feedback, which is shown essential to achieve FTC against sensor faults. A new concept of "equivalent bias" is proposed to model the sensor faults. Both the states and the equivalent bias are on-line estimated by a pseudo separate-bias estimation algorithm. The estimated equivalent bias is then evaluated via a modified Bayes' classification based algorithm to detect and diagnose the sensor faults. Many kinds of sensor faults are tested by Monte Carlo simulations, which demonstrate that the proposed strategy has definite fault tolerant ability against sensor faults, moreover the sensor faults can be on-line detected, isolated, and estimated simultaneously.