Random Laplacian Matrices and Convex Relaxations

The largest eigenvalue of a matrix is always larger or equal than its largest diagonal entry. We show that for a class of random Laplacian matrices with independent off-diagonal entries, this bound is essentially tight: the largest eigenvalue is, up to lower order terms, often the size of the largest diagonal. entry. Besides being a simple tool to obtain precise estimates on the largest eigenvalue of a class of random Laplacian matrices, our main result settles a number of open problems related to the tightness of certain convex relaxation-based algorithms. It easily implies the optimality of the semidefinite relaxation approaches to problems such as $${{\mathbb {Z}}}_2$$Z2 Synchronization and stochastic block model recovery. Interestingly, this result readily implies the connectivity threshold for Erdős–Rényi graphs and suggests that these three phenomena are manifestations of the same underlying principle. The main tool is a recent estimate on the spectral norm of matrices with independent entries by van Handel and the author.

[1]  A. Bandeira,et al.  Sharp nonasymptotic bounds on the norm of random matrices with independent entries , 2014, 1408.6185.

[2]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[3]  Amit Singer,et al.  Tightness of the maximum likelihood semidefinite relaxation for angular synchronization , 2014, Math. Program..

[4]  Amit Singer,et al.  Open Problem: Tightness of maximum likelihood semidefinite relaxations , 2014, COLT.

[5]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[6]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[7]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.

[8]  Anthony Wirth,et al.  Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[9]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[10]  Amit Singer,et al.  Linear inverse problems on Erdős-Rényi graphs: Information-theoretic limits and efficient recovery , 2014, 2014 IEEE International Symposium on Information Theory.

[11]  Subhash Khot,et al.  On the power of unique 2-prover 1-round games , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[12]  Laurent Massoulié,et al.  Community detection thresholds and the weak Ramanujan property , 2013, STOC.

[13]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[14]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[15]  J. Kuelbs Probability on Banach spaces , 1978 .

[16]  Elchanan Mossel,et al.  Consistency thresholds for the planted bisection model , 2016 .

[17]  Mihai Cucuringu,et al.  Synchronization over Z2 and community detection in signed multiplex networks with constraints , 2015, J. Complex Networks.

[18]  Tiefeng Jiang,et al.  SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS , 2010, 1011.2608.

[19]  Prasad Raghavendra,et al.  Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.

[20]  Linyuan Lu,et al.  Complex Graphs and Networks (CBMS Regional Conference Series in Mathematics) , 2006 .

[21]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[22]  Alexandra Kolla,et al.  Multisection in the Stochastic Block Model using Semidefinite Programming , 2015, ArXiv.

[23]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[24]  Eckhard Steeen,et al.  Chromatic-index Critical Graphs of Even Order Program in Applied and Computational Mathematics , 1997 .

[25]  Cristopher Moore,et al.  Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[27]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[30]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[31]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[32]  Emmanuel Abbe,et al.  Exact Recovery in the Stochastic Block Model , 2014, IEEE Transactions on Information Theory.

[33]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[34]  Amit Singer,et al.  Decoding Binary Node Labels from Censored Edge Measurements: Phase Transition and Efficient Recovery , 2014, IEEE Transactions on Network Science and Engineering.

[35]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[36]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[37]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[38]  Bruce E. Hajek,et al.  Achieving exact cluster recovery threshold via semidefinite programming , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[39]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[40]  Yuxin Chen,et al.  Information recovery from pairwise measurements: A shannon-theoretic approach , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[41]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[42]  Amit Singer,et al.  A Cheeger Inequality for the Graph Connection Laplacian , 2012, SIAM J. Matrix Anal. Appl..

[43]  Rick Durrett,et al.  Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .

[44]  James L. Elliot,et al.  Massachusetts Institute of Technology, Cambridge MA 02139 , 1985 .

[45]  Andrea J. Goldsmith,et al.  Information recovery from pairwise measurements: A shannon-theoretic approach , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[46]  Elchanan Mossel,et al.  Consistency Thresholds for the Planted Bisection Model , 2014, STOC.

[47]  Andrea J. Goldsmith,et al.  Information Recovery From Pairwise Measurements , 2015, IEEE Transactions on Information Theory.

[48]  Uriel Feige,et al.  Heuristics for Semirandom Graph Problems , 2001, J. Comput. Syst. Sci..

[49]  Bruce E. Hajek,et al.  Achieving Exact Cluster Recovery Threshold via Semidefinite Programming: Extensions , 2015, IEEE Transactions on Information Theory.

[50]  Elchanan Mossel,et al.  A Proof of the Block Model Threshold Conjecture , 2013, Combinatorica.