Light sheet adaptive optics microscope for 3D live imaging

We report on the incorporation of adaptive optics (AO) into the imaging arm of a selective plane illumination microscope (SPIM). SPIM has recently emerged as an important tool for life science research due to its ability to deliver high-speed, optically sectioned, time-lapse microscope images from deep within in vivo selected samples. SPIM provides a very interesting system for the incorporation of AO as the illumination and imaging paths are decoupled and AO may be useful in both paths. In this paper, we will report the use of AO applied to the imaging path of a SPIM, demonstrating significant improvement in image quality of a live GFP-labeled transgenic zebrafish embryo heart using a modal, wavefront sensorless approach and a heart synchronization method. These experimental results are linked to a computational model showing that significant aberrations are produced by the tube holding the sample in addition to the aberration from the biological sample itself.

[1]  Gordon D. Love,et al.  High-resolution 3D optical microscopy inside the beating zebrafish heart using prospective optical gating , 2012, Biomedical optics express.

[2]  Bing Dong,et al.  Demonstration of portable solar adaptive optics system , 2012 .

[3]  Ulrich Kubitscheck,et al.  Scanned light sheet microscopy with confocal slit detection. , 2012, Optics Express.

[4]  Martin J Booth,et al.  Adaptive optics enables 3D STED microscopy in aberrating specimens. , 2012, Optics express.

[5]  J. Huisken,et al.  Omnidirectional microscopy , 2012, Nature Methods.

[6]  Xiaodong Tao,et al.  Live imaging using adaptive optics with fluorescent protein guide-stars , 2012, Optics express.

[7]  Jonathan M. Taylor,et al.  3D adaptive optics in a light sheet microscope. , 2012, Optics express.

[8]  Ignacio Izeddin,et al.  PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. , 2012, Optics express.

[9]  Emmanuel Beaurepaire,et al.  Accuracy of correction in modal sensorless adaptive optics. , 2012, Optics express.

[10]  Takashi R Sato,et al.  Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex , 2011, Proceedings of the National Academy of Sciences.

[11]  Jonathan M. Taylor,et al.  Real-time optical gating for three-dimensional beating heart imaging. , 2011, Journal of biomedical optics.

[12]  D. Débarre,et al.  Simple characterisation of a deformable mirror inside a high numerical aperture microscope using phase diversity , 2011, Journal of microscopy.

[13]  Omar E. Olarte,et al.  Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy , 2011, Biomedical optics express.

[14]  Jerome Mertz,et al.  Optical sectioning microscopy with planar or structured illumination , 2011, Nature Methods.

[15]  K. Jones Na variability and LGS elongation: impact on wavefront error , 2011, Optical Engineering + Applications.

[16]  Alexandra Fragola,et al.  Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers. , 2011, Journal of biomedical optics.

[17]  Jeroen Bakkers,et al.  Zebrafish as a model to study cardiac development and human cardiac disease , 2011, Cardiovascular research.

[18]  Xiaodong Tao,et al.  Adaptive optics confocal microscopy using direct wavefront sensing. , 2011, Optics letters.

[19]  D. Gavel,et al.  Adaptive optics wide-field microscopy using direct wavefront sensing. , 2011, Optics letters.

[20]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[21]  P. So,et al.  Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. , 2010, Journal of biomedical optics.

[22]  Andrew M. Petzold,et al.  SCORE imaging: specimen in a corrected optical rotational enclosure. , 2010, Zebrafish.

[23]  Thierry Fusco,et al.  Shack-Hartmann tomographic wavefront reconstruction using LGS: analysis of spot elongation and fratricide effect , 2010 .

[24]  Jerome Mertz,et al.  Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. , 2010, Journal of biomedical optics.

[25]  D. Débarre,et al.  Dynamic aberration correction for multiharmonic microscopy. , 2009, Optics letters.

[26]  Alexander Jesacher,et al.  Adaptive harmonic generation microscopy of mammalian embryos. , 2009, Optics letters.

[27]  Kristin N. Walker,et al.  Wavefront correction using a Fourier-based image sharpness metric , 2009, Optical Engineering + Applications.

[28]  Jan Huisken,et al.  Selective plane illumination microscopy techniques in developmental biology , 2009, Development.

[29]  Amanda J Wright,et al.  Adaptive optics for deeper imaging of biological samples. , 2009, Current opinion in biotechnology.

[30]  Uros Krzic,et al.  Light sheet‐based fluorescence microscopy: More dimensions, more photons, and less photodamage , 2008, HFSP journal.

[31]  T. Wilson,et al.  Adaptive optics for structured illumination microscopy. , 2008, Optics express.

[32]  X. Xie,et al.  Adaptive optics for enhanced signal in CARS microscopy. , 2007, Optics express.

[33]  Yibin Tian,et al.  Performance of focus measures in the presence of nondefocus aberrations. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  D. Stainier,et al.  Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). , 2007, Optics letters.

[35]  Martin J Booth,et al.  Image based adaptive optics through optimisation of low spatial frequencies. , 2007, Optics express.

[36]  E. Ribak,et al.  Speckle reduction in ocular wave-front sensing , 2007, 0704.2173.

[37]  P. Verveer,et al.  High-resolution three-dimensional imaging of large specimens with light sheet–based microscopy , 2007, Nature Methods.

[38]  J. Swoger,et al.  Basic building units and properties of a fluorescence single plane illumination microscope. , 2007, The Review of scientific instruments.

[39]  Martin J. Booth,et al.  Adaptive optics in microscopy , 2003, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  W. Denk,et al.  Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing , 2006, Proceedings of the National Academy of Sciences.

[41]  Martin Booth,et al.  Wave front sensor-less adaptive optics: a model-based approach using sphere packings. , 2006, Optics express.

[42]  Francesco Pampaloni,et al.  Life Sciences Require the Third Dimension This Review Comes from a Themed Issue on Cell Structure and Dynamics Edited Modern Three-dimensional Microscopy Spim Technology for Three-dimensional Cell Culture , 2022 .

[43]  Lina J. Karam,et al.  No-reference objective wavelet based noise immune image sharpness metric , 2005, IEEE International Conference on Image Processing 2005.

[44]  Satoshi Kawata,et al.  Methods for the characterization of deformable membrane mirrors. , 2005, Applied optics.

[45]  Richard E Peterson,et al.  Zebrafish as a model vertebrate for investigating chemical toxicity. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[46]  J. C. Dainty,et al.  Wavefront correction through image sharpness maximisation , 2005, SPIE OPTO-Ireland.

[47]  Amanda J Wright,et al.  Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy , 2005, Microscopy research and technique.

[48]  T Wilson,et al.  Simple optimization procedure for objective lens correction collar setting , 2005, Journal of microscopy.

[49]  T. Wilson,et al.  Characterizing specimen induced aberrations for high NA adaptive optical microscopy. , 2004, Optics express.

[50]  M. Gustafsson,et al.  Phase‐retrieved pupil functions in wide‐field fluorescence microscopy , 2004, Journal of microscopy.

[51]  J. Murray,et al.  A common aberration with water‐immersion objective lenses , 2004, Journal of microscopy.

[52]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[53]  B. Macintosh,et al.  Spatially filtered wave-front sensor for high-order adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  M. Langlois,et al.  Multiconjugate adaptive optics: laboratory experience. , 2004, Optics express.

[55]  M A A Neil,et al.  Measurement of specimen‐induced aberrations of biological samples using phase stepping interferometry , 2004, Journal of microscopy.

[56]  J. Girkin,et al.  Practical implementation of adaptive optics in multiphoton microscopy. , 2003, Optics express.

[57]  J J Miller,et al.  Aberration correction by maximizing generalized sharpness metrics. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  Jan Flusser,et al.  A new wavelet-based measure of image focus , 2002, Pattern Recognit. Lett..

[59]  T. Wilson,et al.  Adaptive aberration correction in a confocal microscope , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  O. Albert,et al.  Adaptive correction of depth‐induced aberrations in multiphoton scanning microscopy using a deformable mirror , 2002, Journal of microscopy.

[61]  J. Dainty,et al.  Effects of retinal scattering in the ocular double-pass process. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  P Artal,et al.  Dynamics of the eye's wave aberration. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  T Wilson,et al.  Strategies for the compensation of specimen‐induced spherical aberration in confocal microscopy of skin , 2000, Journal of microscopy.

[64]  J. C. Dainty,et al.  A low cost adaptive optics system using a membrane mirror. , 2000, Optics express.

[65]  S. Jacques,et al.  Imaging superficial tissues with polarized light , 2000, Lasers in surgery and medicine.

[66]  Gordon D. Love,et al.  Use of image quality metrics for correction of noncommon path errors in the ELECTRA adaptive optics system , 1999, Other Conferences.

[67]  L. Zon,et al.  Zebrafish: a new model for human disease. , 1999, Genome research.

[68]  T. Wilson,et al.  Aberration correction for confocal imaging in refractive‐index‐mismatched media , 1998 .

[69]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[70]  C. Sheppard,et al.  Effects of specimen refractive index on confocal imaging , 1997 .

[71]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[72]  Lynn Fuller,et al.  Comparison of scalar and vector diffraction modeling for deep-UV lithography , 1993, Advanced Lithography.

[73]  J. Loomis,et al.  Evaluation of optical aberrations in point images. , 1992, Applied optics.

[74]  Tae-Sun Choi,et al.  Focusing techniques , 1992, Other Conferences.

[75]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[76]  Joseph J. M. Braat,et al.  Polynomial expansion of severely aberrated wave fronts , 1987 .

[77]  D. van Norren,et al.  Intensity and polarization of light scattered at small angles from the human fovea. , 1986, Vision research.

[78]  A. J. Schwemin,et al.  Correction of atmospheric distortion with an image-sharpening telescope* , 1977 .

[79]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[80]  R. Muller,et al.  Real-time correction of atmospherically degraded telescope images through image sharpening , 1974 .

[81]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[82]  J. Goodman Introduction to Fourier optics , 1969 .

[83]  W. Lukosz,et al.  Der Einfluß der Aberrationen auf die Optische Übertragungsfunktion bei Kleinen Orts-Frequenzen , 1963 .

[84]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[85]  Christian Huyghens Traité de la Lumière , 1920 .