A G ] 1 N ov 2 01 1 Soliton equations and the Riemann-Schottky problem
暂无分享,去创建一个
[1] S. Grushevsky. The Schottky Problem , 2010, 1009.0369.
[2] I. Krichever,et al. Abelian solutions of the soliton equations and geometry of abelian varieties. , 2008, 0804.0794.
[3] I. Krichever,et al. Abelian solutions of the KP equation , 2008 .
[4] S. Grushevsky,et al. Integrable discrete Schrodinger equations and a characterization of Prym varieties by a pair of quadrisecants , 2007, 0705.2829.
[5] I. Krichever. Characterizing Jacobians via trisecants of the Kummer variety , 2006 .
[6] I. Krichever. A characterization of Prym varieties , 2005 .
[7] I. Krichever,et al. Characterizing Jacobians via flexes of the Kummer variety , 2005, math/0502138.
[8] L. Dickey. Soliton Equations and Hamiltonian Systems , 2003 .
[9] G. Marini. A Geometrical Proof of Shiota's Theorem on a Conjecture of S. P. Novikov , 1998, Compositio Mathematica.
[10] I. Krichever,et al. Elliptic Solutions to Difference Non-Linear Equations and Related Many-Body Problems , 1998 .
[11] I. Krichever,et al. Symplectic forms in the theory of solitons , 1997, hep-th/9708170.
[12] I. Krichever,et al. Spin generalization of the Ruijsenaars-Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra , 1995 .
[13] R. Donagi. Non-Jacobians in the Schottky loci , 1987 .
[14] Takahiro Shiota,et al. Characterization of Jacobian varieties in terms of soliton equations , 1986 .
[15] R. Gunning. Some Identities for Abelian Integrals , 1986 .
[16] G. Segal,et al. Loop groups and equations of KdV type , 1985 .
[17] G. E. Welters. A criterion for Jacobi varieties , 1984 .
[18] E. Arbarello,et al. On a Set of Equations Characterizing Riemann Matrices , 1984 .
[19] B. Geemen,et al. Siegel modular forms vanishing on the moduli space of curves , 1984 .
[20] John D. Fay. On the even-order vanishing of Jacobian theta functions , 1984 .
[21] G. E. Welters. On flexes of the Kummer variety (Note on a theorem of R.C. Gunning) , 1983 .
[22] R. Gunning. Some curves in abelian varities , 1982 .
[23] J. Igusa. On the irreducibility of Schottky's divisor , 1982 .
[24] I. Krichever. ALGEBRAIC CURVES AND NON-LINEAR DIFFERENCE EQUATIONS , 1978 .
[25] I. V. Cherednik,et al. Differential equations for the Baker—Akhiezer functions of algebraic curves , 1978 .
[26] I. Krichever. Commutative rings of ordinary linear differential operators , 1978 .
[27] Igor Krichever,et al. METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .
[28] John D. Fay. Theta Functions on Riemann Surfaces , 1973 .
[29] Jean-Pierre Serre. Faisceaux algébriques cohérents , 1955 .
[30] H. Baker. Note on the foregoing paper, “commutative ordinary differential operators," by J. L. Burchnall and J. W. Chaundy , 1928 .
[31] J. L. Burchnall,et al. Commutative Ordinary Differential Operators , 1928 .
[32] R. Varley,et al. The Prym Torelli problem : an update and a reformulation as a question in birational geometry , 2007 .
[33] I. Krichever. Integrable linear equations and the Riemann-Schottky problem , 2006 .
[34] M. Guest. The two-dimensional Toda lattice , 1997 .
[35] O. Debarre. The Schottky Problem: an Update , 1995 .
[36] O. Debarre. Vers une stratification de l’espace des modules des varietes abeliennes principalement polarisees , 1992 .
[37] O. Debarre,et al. Sur le problème de Schottky pour les variétés de Prym , 1987 .
[38] V. Kanev. Principal polarizations of Prym-Tjurin varieties , 1987 .
[39] A. Beauville. Le problème de Schottky et la conjecture de Novikov , 1987 .
[40] Ron Donagi. Big Schottky , 1987 .
[41] M. Jimbo,et al. TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .
[42] Igor Krichever,et al. Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles , 1980 .
[43] Igor Krichever,et al. Integration of nonlinear equations by the methods of algebraic geometry , 1977 .
[44] D. Mumford,et al. An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation , Korteweg deVries equation and related non-linear equations , 1977 .
[45] David Mumford,et al. Curves and their Jacobians , 1975 .
[46] Vladimir E. Zakharov,et al. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .
[47] D. Mumford,et al. Prym Varieties I , 1974 .
[48] D. Mumford. Theta characteristics of an algebraic curve , 1971 .
[49] D. Mumford,et al. The irreducibility of the space of curves of given genus , 1969 .
[50] F. Schottky. Zur Theorie der Abelschen Functionen von vier Variabeln. , 1888 .