Validation of Statistical Channel Models for 60 GHz Radio Systems in Hospital Environments

Statistical channel models for 60 GHz communications systems in hospital environments are validated using channel capacity and throughput of a physical layer as figures of merit. The channel models are validated by comparing the performance figures with channels from the measurements and the channel models. The throughput evaluation is based on system specifications given by the IEEE 802.15.3 c standard for high data rate wireless personal area networks, namely orthogonal frequency division multiplexing and single carrier transmissions. The channel capacity serves as a metric of the potential of the two transmission schemes since it defines the upper bound of the throughput. The capacity is derived based on the signal formats of the transmission schemes. The capacity shows that 97 % of the measurement results are within 2σ range of the modeled results. The throughput shows that the channel models predict the maximum achievable throughput of the measured channels precisely, while the mean throughput in some cases shows difference because of the interpolation effect of the small-scale fading in the statistical channel models. Due to the interpolation effect, the channel model is more suitable for a precise analysis of the outage performance than the measurements where the number of channel samples is limited and the worst faded channels are not necessarily included.

[1]  P. Vainikainen,et al.  Statistical Channel Models for 60 GHz Radio Propagation in Hospital Environments , 2012, IEEE Transactions on Antennas and Propagation.

[2]  Katsuyuki Haneda,et al.  Measurement Based Path Loss and Delay Spread Modeling in Hospital Environments at 60 GHz , 2011, IEEE Transactions on Wireless Communications.

[3]  Katsuyuki Haneda,et al.  Performance evaluation of 60 GHz radio systems in hospital environments , 2012, 2012 IEEE International Conference on Communications (ICC).

[4]  P. Vainikainen,et al.  Feasibility study of 60 GHz radio systems in hospital environments , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[5]  Chia-Chin Chong,et al.  An Overview of Multigigabit Wireless through Millimeter Wave Technology: Potentials and Technical Challenges , 2007, EURASIP J. Wirel. Commun. Netw..