Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial

We present a mid-IR highly wavelength-tunable broadband cross polarization conversion composed of a single patterned top layer with L-shaped graphene nanostructures, a dielectric spacer, and a gold plane layer. It can convert linearly polarized light to its cross polarization in the reflection mode. The polarization conversion can be dynamically tuned and realize a broadband effect by varying the Fermi energy without reoptimizing and refabricating the nanostructures. This offers a further step in developing the tunable polarizers and the polarization switchers.

[1]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[2]  Hong-qiang Li,et al.  Metallic helix array as a broadband wave plate. , 2011, Physical review letters.

[3]  Zeyong Wei,et al.  Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators , 2011 .

[4]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[5]  H. B. Chan,et al.  A half wave retarder made of bilayer subwavelength metallic apertures , 2011 .

[6]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[7]  Z. Yin,et al.  Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template , 2012, Advanced materials.

[8]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[9]  Yang Cao,et al.  An ultrathin twist-structure polarization transformer based on fish-scale metallic wires , 2011 .

[10]  Sailing He,et al.  90° polarization rotator using a bilayered chiral metamaterial with giant optical activity , 2010 .

[11]  Y. Kivshar,et al.  Nonlinear properties of left-handed metamaterials. , 2003, Physical review letters.

[12]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[13]  Shining Zhu,et al.  Cavity-involved plasmonic metamaterial for optical polarization conversion , 2010 .

[14]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[15]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[16]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[17]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[18]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[19]  Rachid Oussaid,et al.  Enhanced-transmission metamaterials as anisotropic plates , 2011 .

[20]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[21]  Ji Won Suk,et al.  Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. , 2013, Nano letters.

[22]  Jianguo Tian,et al.  Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses. , 2013, Optics letters.

[23]  Stephan Link,et al.  Active modulation of nanorod plasmons. , 2011, Nano letters.

[24]  W. Ye,et al.  Metallic nanofilm half-wave plate based on magnetic plasmon resonance. , 2012, Optics letters.

[25]  Akhlesh Lakhtakia,et al.  Selected papers on natural optical activity , 1990 .

[26]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[27]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[28]  S. M. Wang,et al.  Manipulating optical polarization by stereo plasmonic structure. , 2011, Optics express.

[29]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[30]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.