Minimum Dominating Sets in Scale-Free Network Ensembles

We study the scaling behavior of the size of minimum dominating set (MDS) in scale-free networks, with respect to network size N and power-law exponent γ, while keeping the average degree fixed. We study ensembles generated by three different network construction methods, and we use a greedy algorithm to approximate the MDS. With a structural cutoff imposed on the maximal degree we find linear scaling of the MDS size with respect to N in all three network classes. Without any cutoff (kmax = N – 1) two of the network classes display a transition at γ ≈ 1.9, with linear scaling above, and vanishingly weak dependence below, but in the third network class we find linear scaling irrespective of γ. We find that the partial MDS, which dominates a given z < 1 fraction of nodes, displays essentially the same scaling behavior as the MDS.

[1]  S. Hakimi On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I , 1962 .

[2]  B. Bollobás The evolution of random graphs , 1984 .

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  Margaret B. Cozzens,et al.  Dominating sets in social network graphs , 1988 .

[5]  Noga Alon,et al.  Transversal numbers of uniform hypergraphs , 1990, Graphs Comb..

[6]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[7]  David C. Fisher,et al.  Upper Bounds for the Domination Number of a Graph , 1996 .

[8]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[9]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[10]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[11]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[12]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[13]  Michele Zito,et al.  Greedy Algorithms for Minimisation Problems in Random Regular Graphs , 2001, ESA.

[14]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[15]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Anant P. Godbole,et al.  On the Domination Number of a Random Graph , 2001, Electron. J. Comb..

[17]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[18]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Alessandro Vespignani,et al.  Cut-offs and finite size effects in scale-free networks , 2003, cond-mat/0311650.

[20]  Aravind Srinivasan,et al.  Structural and algorithmic aspects of massive social networks , 2004, SODA '04.

[21]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.

[22]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[23]  Colin Cooper,et al.  Lower Bounds and Algorithms for Dominating Sets in Web Graphs , 2005, Internet Math..

[24]  R. Pastor-Satorras,et al.  Generation of uncorrelated random scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Serrano,et al.  Weighted Configuration Model , 2005, cond-mat/0501750.

[26]  Matthieu Latapy,et al.  Efficient and simple generation of random simple connected graphs with prescribed degree sequence , 2005, J. Complex Networks.

[27]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[28]  Ginestra Bianconi,et al.  Scale-free networks with an exponent less than two. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  H. Bauke Parameter estimation for power-law distributions by maximum likelihood methods , 2007, 0704.1867.

[30]  Joachim Kneis,et al.  Partial vs. Complete Domination: t-Dominating Set , 2007, SOFSEM.

[31]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[32]  Hyunju Kim,et al.  Degree-based graph construction , 2009, 0905.4892.

[33]  Kevin E. Bassler,et al.  Efficient and Exact Sampling of Simple Graphs with Given Arbitrary Degree Sequence , 2010, PloS one.

[34]  Yan Shi,et al.  On positive influence dominating sets in social networks , 2011, Theor. Comput. Sci..

[35]  Thilo Gross,et al.  All scale-free networks are sparse. , 2011, Physical review letters.

[36]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[37]  Tatsuya Akutsu,et al.  Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control , 2012 .