Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions

New concepts of semistrict quasimonotonicity and strict quasimonotonicity for multivalued maps are introduced. It is shown that a locally Lipschitz map is (semi)strictly quasiconvex if and only if its Clarke subdifferential is (semi)strictly quasimonotone. Finally, an existence result for the corresponding variational inequality problem is obtained.

[1]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[2]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[3]  Jen-Chih Yao,et al.  Multi-valued variational inequalities with K-pseudomonotone operators , 1994 .

[4]  K. Fan A generalization of Tychonoff's fixed point theorem , 1961 .

[5]  P. H. Quang,et al.  Generalized Convexity of Functions and Generalized Monotonicity of Set-Valued Maps , 1997 .

[6]  J. Benoist Connectedness of the Efficient Set for Strictly Quasiconcave Sets , 1998 .

[7]  Siegfried Schaible,et al.  Quasimonotone variational inequalities in Banach spaces , 1996 .

[8]  S. Schaible,et al.  Connectedness of the Efficient Set for Three-Objective Quasiconcave Maximization Problems , 1997 .

[9]  I. V. Konnov,et al.  On Quasimonotone Variational Inequalities , 1998 .

[10]  Nicolas Hadjisavvas,et al.  On the Subdifferentials of Quasiconvex and Pseudoconvex Functions and Cyclic Monotonicity , 1999 .

[11]  J. Penot Generalized Convexity in the Light of Nonsmooth Analysis , 1995 .

[12]  Siegfried Schaible,et al.  On strong pseudomonotonicity and (semi)strict quasimonotonicity , 1993 .

[13]  Didier Aussel Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach , 1998 .

[14]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[15]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[16]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[17]  Didier Aussel,et al.  Subdifferential characterization of quasiconvexity and convexity , 1994 .

[18]  Dariusz Zagrodny,et al.  Approximate mean value theorem for upper subderivatives , 1988 .