Reliable 3D surface acquisition, registration and validation using statistical error models

We present a complete data acquisition and processing chain for the reliable inspection of industrial parts considering anisotropic noise. Data acquisition is performed with a stripe projection system that was modeled and calibrated using photogrammetric techniques. Covariance matrices are attached individually to points during 3D coordinate computation. Different datasets are registered using a new multi-view registration technique. In the validation step, the registered datasets are compared with the CAD model to verify that the measured part meets its specification. While previous methods have only considered the geometrical discrepancies between the sensed part and its CAD model, we also consider statistical information to decide whether the differences are significant.

[1]  Andrew W. Fitzgibbon,et al.  Calibration, data consistency and model acquisition with laser stripers , 1998, Int. J. Comput. Integr. Manuf..

[2]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[3]  Lynne Milgram,et al.  The International Organization for Standardization (ISO) , 1999 .

[4]  Marc Rioux,et al.  Digital 3D imaging: theory and applications , 1994, Other Conferences.

[5]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[6]  Richard A. Volz,et al.  Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..

[7]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Marc Levoy,et al.  Better optical triangulation through spacetime analysis , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  Alan M. McIvor,et al.  Accurate 3D measurement using a structured light system , 1998, Image Vis. Comput..

[10]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[12]  Georg Wiora High-resolution measurement of phase-shift amplitude and numeric object phase calculation , 2000, SPIE Optics + Photonics.

[13]  Andrew W. Fitzgibbon,et al.  Simultaneous registration of multiple range views for use in reverse engineering , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[14]  Richard Anthony Pito Automated surface acquisition using range cameras , 1997 .

[15]  Adrian Hilton,et al.  Estimating pose uncertainty for surface registration , 1998, Image Vis. Comput..

[16]  Dieter Fritsch,et al.  DATA PROCESSING AND CALIBRATION OF A CROSS-PATTERN STRIPE PROJECTOR , 2000 .

[17]  Hobart R. Everett,et al.  Survey of collision avoidance and ranging sensors for mobile robots , 1989, Robotics Auton. Syst..

[18]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[20]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[21]  Gang Wang,et al.  Registration and Integration of Multiple Object Views for 3D Model Construction , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  M. Rioux,et al.  Real-time numerical peak detector , 1986 .

[23]  Tanneguy Redarce,et al.  High-speed and noncontact validation of rapid prototyping parts , 1997, Other Conferences.

[24]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[25]  Clive S. Fraser,et al.  Digital camera self-calibration , 1997 .

[26]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  K. Ikeuchi,et al.  Iterative Estimation of Rotation and Translation using the Quaternion , 1995 .