Lead zirconate titanate cantilever for noncontact atomic force microscopy

Noncontact atomic force microscopy with frequency modulation detection is a promising technique for surface observation with true atomic resolution. The piezoelectric material itself can be an actuator and sensor of the oscillating probe simultaneously, without the need for additional electro-mechanical transducers or other measurement systems. A vertical resolution of 0.01 nm rms has been achieved using a microfabricated cantilever with lead zirconate titanate thin film in noncontact mode frequency modulation detection. The cantilever also has a sharpened pyramidal stylus with a radius of about 10 nm for noncontact atomic force microscopy.

[1]  P. Guethner Simultaneous imaging of Si(111) 7×7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode , 1996 .

[2]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[3]  Hal Edwards,et al.  Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor , 1997 .

[4]  Toru Fujii,et al.  Effect of poling on piezoelectric properties of lead zirconate titanate thin films formed by sputtering , 1995 .

[5]  K. Fukui,et al.  Atom-Resolved Image of the TiO 2 \(110\) Surface by Noncontact Atomic Force Microscopy , 1997 .

[6]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[7]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[8]  T. Itoh,et al.  Frequency modulation detection high vacuum scanning force microscope with a self-oscillating piezoelectric cantilever , 1997 .

[9]  K. Dransfeld,et al.  Scanning near-field acoustic microscopy , 1989 .

[10]  H. Sugimura,et al.  Site discrimination of adatoms in Si(111)-7 × 7 by noncontact atomic force microscopy , 1997 .

[11]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[12]  Abdullah Atalar,et al.  Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor , 1996 .

[13]  S. Kitamura,et al.  Observation of 7×7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy , 1995 .

[14]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[15]  M. Ohta,et al.  Atomically Resolved InP(110) Surface Observed with Noncontact Ultrahigh Vacuum Atomic Force Microscope , 1995 .

[16]  Shunji Watanabe,et al.  Micro‐fabricated piezoelectric cantilever for atomic force microscopy , 1996 .