Numerical comparison of least square-based finite-difference (LSFD) and radial basis function-based finite-difference (RBFFD) methods

[1]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[2]  T. Liszka An interpolation method for an irregular net of nodes , 1984 .

[3]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[4]  Knut Mørken,et al.  Knot removal for parametric B-spline curves and surfaces , 1987, Comput. Aided Geom. Des..

[5]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[6]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[7]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[8]  R. d'Inverno Approaches to Numerical Relativity , 2005 .

[9]  C. Shu,et al.  APPLICATION OF GENERALIZED DIFFERENTIAL QUADRATURE TO SOLVE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1992 .

[10]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[11]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[12]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[13]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[14]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[15]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[16]  Y. Hon,et al.  A quasi-interpolation method for solving stiff ordinary differential equations , 2000 .

[17]  W. Chen,et al.  New RBF collocation methods and kernel RBF with applications , 2001, ArXiv.

[18]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[19]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[20]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[21]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[22]  C. Shu,et al.  Development of least-square-based two-dimensional finite-difference schemes and their application to simulate natural convection in a cavity , 2004 .

[23]  H. Ding,et al.  Error estimates of local multiquadric‐based differential quadrature (LMQDQ) method through numerical experiments , 2005 .