A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission

[1]  A. Constanti,et al.  Differential effect of zinc on the vertebrate GABAA‐receptor complex , 1990, British journal of pharmacology.

[2]  P. Taylor,et al.  Facilitated uptake of zinc into human erythrocytes. Relevance to the treatment of sickle-cell anaemia. , 1990, Biochemical pharmacology.

[3]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[4]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[5]  C. J. A. Van Den Hamer,et al.  Zinc Uptake into Synaptosomes , 1988, Journal of neurochemistry.

[6]  M. Mayer,et al.  Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons , 1987, Nature.

[7]  E. Kasarskis,et al.  A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain , 1987, Journal of Neuroscience Methods.

[8]  D. Choi,et al.  Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. , 1987, Science.

[9]  T. Hoogenraad The neurobiology of zinc Part A: Physiochemistry, anatomy, and techniques (390 p.); Part B: Deficiency, toxicity, and pathology (345 p.). Edited by C.J. Frederickson, G.A. Howell, E.J. Kasarskis. Alan R. Liss Inc., New York, Figs and tables , 1985, Clinical Neurology and Neurosurgery.

[10]  G. Danscher,et al.  Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study , 1985, Brain Research.

[11]  G. Wolf,et al.  Uptake and subcellular distribution of 65zinc in brain structures during the postnatal development of the rat , 1984, Neuroscience Letters.

[12]  Shin-Ho Chung,et al.  Release of endogenous Zn2+ from brain tissue during activity , 1984, Nature.

[13]  G. A. Howell,et al.  Stimulation-induced uptake and release of zinc in hippocampal slices , 1984, Nature.

[14]  J. Price,et al.  Fiber systems in the olfactory bulb and cortex: A study in adult and developing rats, Using the Timm method with the light and electron microscope , 1984, The Journal of comparative neurology.

[15]  H. Goldberg,et al.  Fifth day fits , 1982, Archives of disease in childhood.

[16]  R. Nicoll,et al.  Feed‐forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro , 1982, The Journal of physiology.

[17]  P. Schwartzkroin,et al.  Development of rabbit hippocampus: physiology. , 1981, Brain research.

[18]  N. Bowery,et al.  3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain , 1981, Nature.

[19]  P. Andersen,et al.  Two different responses of hippocampal pyramidal cells to application of gamma‐amino butyric acid. , 1980, The Journal of physiology.

[20]  G. Hesse Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers. , 1979, Science.

[21]  Jang-Yen Wu,et al.  The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum , 1975, Brain Research.

[22]  P. Andersen,et al.  Persistent function of mossy fibre synapses after metal chelation with DEDTC (Antabuse) , 1975, Brain Research.

[23]  I. Crawford,et al.  ZINC IN MATURING RAT BRAIN: HIPPOCAMPAL CONCENTRATION AND LOCALIZATION 1 , 1972, Journal of neurochemistry.

[24]  Y. Ibata,et al.  ELECTRON MICROSCOPIC DEMONSTRATION OF ZINC IN THE HIPPOCAMPAL FORMATION USING TIMM'S SULFIDE-SILVER TECHNIQUE , 1969, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[25]  C. Frederickson Neurobiology of zinc and zinc-containing neurons. , 1989, International review of neurobiology.