Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
暂无分享,去创建一个
Dmitry Kropotov | Alexander Novikov | Pavel Izmailov | Alexander Novikov | Pavel Izmailov | D. Kropotov
[1] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[2] Andrew Gordon Wilson,et al. Stochastic Variational Deep Kernel Learning , 2016, NIPS.
[3] Alexander Novikov,et al. Tensor Train decomposition on TensorFlow (T3F) , 2018, J. Mach. Learn. Res..
[4] Maurizio Filippone,et al. Random Feature Expansions for Deep Gaussian Processes , 2016, ICML.
[5] Andrew Gordon Wilson,et al. Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.
[6] Guillaume Bouchard. Efficient Bounds for the Softmax Function and Applications to Approximate Inference in Hybrid models , 2008 .
[7] Andrew Gordon Wilson,et al. Deep Kernel Learning , 2015, AISTATS.
[8] Kurt Cutajar. Practical learning of deep gaussian processes via random Fourier features , 2016 .
[9] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[10] Alexis Boukouvalas,et al. GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..
[11] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[12] Anton Rodomanov,et al. Putting MRFs on a Tensor Train , 2014, ICML.
[13] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[14] R. Keys. Cubic convolution interpolation for digital image processing , 1981 .
[15] Michael A. Osborne,et al. Blitzkriging: Kronecker-structured Stochastic Gaussian Processes , 2015, 1510.07965.
[16] Alexander Novikov,et al. Tensorizing Neural Networks , 2015, NIPS.
[17] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[18] Sergey Ioffe,et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.
[19] Zoubin Ghahramani,et al. GPstruct: Bayesian Structured Prediction Using Gaussian Processes , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[20] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[21] Alex Krizhevsky,et al. Learning Multiple Layers of Features from Tiny Images , 2009 .
[22] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[23] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[24] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.