Six generalized Schur complements

Abstract We give a unified treatment of equivalence between some old and new generalizations of the Schur complement of matrices.

[1]  G. Trapp Hermitian semidefinite matrix means and related matrix inequalities—an introduction , 1984 .

[2]  J. P. Williams,et al.  On operator ranges , 1971 .

[3]  W. Anderson,et al.  SHORTED OPERATORS. II , 1975 .

[4]  Operator means, fixed points, and the norm convergence of monotone approximants. , 1987 .

[5]  M. Puri,et al.  Shorted Matrices - An Extended Concept and Some Applications in Design and Analysis of Experiments. , 1982 .

[6]  Sujit Kumar Mitra,et al.  Determination of a matrix by its subclasses of generalized inverses , 1972 .

[7]  R. Douglas On majorization, factorization, and range inclusion of operators on Hilbert space , 1966 .

[8]  Diane Valérie Ouellette Schur complements and statistics , 1981 .

[9]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[10]  T. Andô Generalized Schur complements , 1979 .

[11]  R. Cottle Manifestations of the Schur complement , 1974 .

[12]  S. Mitra Simultaneous diagonalization of rectangular matrices , 1982 .

[13]  A. Albert Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses , 1969 .

[14]  D. Carlson What are Schur complements, anyway? , 1986 .

[15]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[16]  T. Markham,et al.  A Generalization of the Schur Complement by Means of the Moore–Penrose Inverse , 1974 .

[17]  T. D. Morley,et al.  ALMOST DEFINITE OPERATORS AND ELECTRO-MECHANICAL SYSTEMS* , 1978 .

[18]  J. Sylvester XXXVII. On the relation between the minor determinants of linearly equivalent quadratic functions , 1851 .