A branching distributed temporal logic for reasoning about entanglement-free quantum state transformations

The Distributed Temporal Logic DTL allows one to reason about temporal properties of a distributed system from the local point of view of the system's agents, which are assumed to execute independently and to interact by means of event sharing. In this paper, we introduce the Quantum Branching Distributed Temporal Logic QBDTL, a variant of DTL able to represent (entanglement-free) quantum state transformations in an abstract, qualitative way. In QBDTL, each agent represents a distinct quantum bit (the unit of quantum information theory), which evolves by means of quantum transformations and possibly interacts with other agents, and n-ary quantum operators act as communication/synchronization points between agents. We endow QBDTL with a DTL-style semantics, which fits the intrinsically distributed nature of quantum computing, we formalize a labeled deduction system for QBDTL, and we prove the soundness and completeness of this deduction system with respect to the given semantics. We give a number of examples and, finally, we discuss possible extensions of our logic in order to reason about entanglement phenomena.

[1]  Luca Viganò,et al.  Distributed temporal logic for the analysis of security protocol models , 2011, Theor. Comput. Sci..

[2]  Rajagopal Nagarajan,et al.  QMC: A Model Checker for Quantum Systems , 2007, CAV.

[3]  Mikio Nakahara,et al.  Quantum Computing - From Linear Algebra to Physical Realizations , 2008 .

[4]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[5]  Margherita Zorzi,et al.  Quantum State Transformations and Branching Distributed Temporal Logic - (Invited Paper) , 2014, WoLLIC.

[6]  John L. Bell,et al.  A New Approach to Quantum Logic , 1986, The British Journal for the Philosophy of Science.

[7]  Mordechai Ben-Ari,et al.  The temporal logic of branching time , 1981, POPL '81.

[8]  Karin Ackermann,et al.  Labelled Deductive Systems , 2016 .

[9]  Hans-Dieter Ehrich,et al.  Specifying communication in distributed information systems , 2000, Acta Informatica.

[10]  Luca Viganò,et al.  A Qualitative Modal Representation of Quantum Register Transformations , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[11]  Luca Viganò,et al.  Natural Deduction for Non-Classical Logics , 1998, Stud Logica.

[12]  Luca Viganò,et al.  Labelled natural deduction for a bundled branching temporal logic , 2011, J. Log. Comput..

[13]  Alexandru Baltag,et al.  The Logic of Quantum Programs , 2004, ArXiv.

[14]  Ugo Dal Lago,et al.  On a measurement-free quantum lambda calculus with classical control , 2009, Math. Struct. Comput. Sci..

[15]  Samson Abramsky,et al.  A categorical quantum logic , 2006, Math. Struct. Comput. Sci..

[16]  Luca Viganò,et al.  Labelled Tableaux for Distributed Temporal Logic , 2009, J. Log. Comput..

[17]  Steven Roman Advanced Linear Algebra , 1992 .

[18]  Dov M. Gabbay,et al.  A New Approach to Quantum Logic , 2007 .

[19]  Margherita Zorzi,et al.  On quantum lambda calculi: a foundational perspective , 2014, Mathematical Structures in Computer Science.

[20]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[21]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[22]  Peter Mittelstaedt The modal logic of quantum logic , 1979, J. Philos. Log..

[23]  Luca Viganò,et al.  Modal Deduction Systems for Quantum State Transformations , 2011, J. Multiple Valued Log. Soft Comput..

[24]  Luca Viganò,et al.  Labelled non-classical logics , 2000 .

[25]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  Ugo Dal Lago,et al.  Quantum implicit computational complexity , 2010, Theor. Comput. Sci..

[28]  Luca Viganò,et al.  A Labeled Deduction System for the Logic UB , 2013, 2013 20th International Symposium on Temporal Representation and Reasoning.

[29]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[30]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[31]  Yuan Feng,et al.  An algebra of quantum processes , 2007, TOCL.

[32]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[33]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[34]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[35]  Ugo Dal Lago,et al.  Confluence Results for a Quantum Lambda Calculus with Measurements , 2011, Electron. Notes Theor. Comput. Sci..

[36]  Harumichi Nishimura,et al.  Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families , 2009, Quantum Inf. Process..

[37]  Alexandru Baltag,et al.  LQP: the dynamic logic of quantum information , 2006, Mathematical Structures in Computer Science.

[38]  Alexandru Baltag,et al.  Quantum logic as a dynamic logic , 2011, Synthese.

[39]  Alessio Lomuscio,et al.  Automatic verification of parameterised multi-agent systems , 2013, AAMAS.

[40]  J. Girard Proof Theory and Logical Complexity , 1989 .

[41]  Luca Viganò,et al.  Labeled Natural Deduction Systems for a Family of Tense Logics , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[42]  Dov M. Gabbay,et al.  Labelled Deductive Systems: Volume 1 , 1996 .