Non-iterative RGB-D-inertial Odometry

This paper presents a non-iterative solution to RGB-D-inertial odometry system. Traditional odometry methods resort to iterative algorithms which are usually computationally expensive or require well-designed initialization. To overcome this problem, this paper proposes to combine a non-iterative front-end (odometry) with an iterative back-end (loop closure) for the RGB-D-inertial SLAM system. The main contribution lies in the novel non-iterative front-end, which leverages on inertial fusion and kernel cross-correlators (KCC) to match point clouds in frequency domain. Dominated by the fast Fourier transform (FFT), our method is only of complexity $\mathcal{O}(n\log{n})$, where $n$ is the number of points. Map fusion is conducted by element-wise operations, so that both time and space complexity are further reduced. Extensive experiments show that, due to the lightweight of the proposed front-end, the framework is able to run at a much faster speed yet still with comparable accuracy with the state-of-the-arts.

[1]  Josechu J. Guerrero,et al.  Dense RGB-D visual odometry using inverse depth , 2016, Robotics Auton. Syst..

[2]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[4]  Chen Wang,et al.  Ultra-wideband aided fast localization and mapping system , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[7]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[8]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[9]  Jan-Michael Frahm,et al.  A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus , 2008, ECCV.

[10]  Roland Siegwart,et al.  Dense visual-inertial navigation system for mobile robots , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[11]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[12]  Vijay Kumar,et al.  Visual-inertial direct SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Javier González,et al.  Fast Visual Odometry for 3-D Range Sensors , 2015, IEEE Transactions on Robotics.

[14]  Atsushi Yamashita,et al.  RGB-D SLAM using vanishing point and door plate information in corridor environment , 2015, Intell. Serv. Robotics.

[15]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[16]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[17]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[18]  Stefan Leutenegger,et al.  Dense RGB-D-inertial SLAM with map deformations , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[20]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[21]  Federico Tombari,et al.  CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Chen Wang,et al.  Non-iterative SLAM , 2017, 2017 18th International Conference on Advanced Robotics (ICAR).

[23]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[24]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[25]  Sen Wang,et al.  VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem , 2017, AAAI.

[26]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[28]  Dirk Wollherr,et al.  IBuILD: Incremental bag of Binary words for appearance based loop closure detection , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  W. Burgard,et al.  D Mapping with an RGB-D Camera , 2014 .

[31]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[33]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[36]  John J. Leonard,et al.  Kintinuous: Spatially Extended KinectFusion , 2012, AAAI 2012.

[37]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[38]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[39]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[40]  Lu Ma,et al.  Large Scale Dense Visual Inertial SLAM , 2015, FSR.

[41]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[42]  Chen Wang,et al.  Correlation Flow: Robust Optical Flow Using Kernel Cross-Correlators , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[44]  Debashish Chakravarty,et al.  DeepVO: A Deep Learning approach for Monocular Visual Odometry , 2016, ArXiv.

[45]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[46]  W. Burgard,et al.  RAWSEEDS: Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets , 2010 .

[47]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Matthias Nießner,et al.  BundleFusion , 2016, TOGS.

[49]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[50]  Juan Andrade-Cetto,et al.  Mapping, Planning and Exploration with Pose SLAM , 2018, Springer Tracts in Advanced Robotics.

[51]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[52]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[53]  Roland Siegwart,et al.  Real-time metric state estimation for modular vision-inertial systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[54]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[55]  Kostas Daniilidis,et al.  Fully Automatic Registration of 3D Point Clouds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[56]  Wolfram Burgard,et al.  Real-time 3D visual SLAM with a hand-held camera , 2011 .

[57]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Tomasz Malisiewicz,et al.  Toward Geometric Deep SLAM , 2017, ArXiv.

[59]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[60]  Paolo Valigi,et al.  Exploring Representation Learning With CNNs for Frame-to-Frame Ego-Motion Estimation , 2016, IEEE Robotics and Automation Letters.