Synthesis of the 780–740 Ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: Implications for Laurentia-wide cratonic marine basins

The upper Tonian Chuar, Uinta Mountain, and middle Pahrump (ChUMP) groups of present-day western Laurentia collectively record the early breakup of Rodinia, large-scale perturbations in the carbon cycle, and eukaryotic evolution, all of which preceded the onset of global glaciation by tens of millions of years. The spectacularly preserved and shale-rich Chuar Group of the Grand Canyon Supergroup stands out as one of the best global records of this time period, particularly for paleobiology. A new U-Pb age of 782 Ma on detrital zircons ( n = 14 young grains) from the underlying Nankoweap Formation refines the Chuar Group’s maximum depositional age to younger than 782 Ma. A new 40 Ar/ 39 Ar age of 764 ± 16 Ma (2σ) from K-feldspar within early diagenetic marcasite nodules from the upper Chuar Group (Awatubi Member) helps calibrate the rich Chuar microfossil record and constrain the large-magnitude shift in δ 13 C org (up to 18‰; referred to here as the Awatubi positive carbon-isotope excursion or APCIE) to between ca. 764 and ca. 742 Ma, the date of an ash near the top of the Chuar Group. In addition to the maximum depositional age of ca. 782 Ma, U-Pb detrital zircon analyses ( n = 826 grains) on sandstone beds from the underlying Nankoweap Formation indicate the presence of multiple older Laurentian age peaks. The similarity of detrital zircon populations and sedimentary character to that of the overlying Chuar Group ( n = 764 grains) suggests that the Nankoweap Formation should be included as the lowermost unit in the Chuar Group. This revised geochronological framework indicates a 300 Ma unconformity between the Chuar Group (including the Nankoweap Formation) and the underlying 1.1 Ga Cardenas Basalt of the Unkar Group. Chuar Group detrital zircon populations share similarities with those of the Uinta Mountain Group and especially the middle Pahrump Group, including ca. 780 Ma grains. Biostratigraphic correlation using microfossils enhances the ChUMP connection and shows a trend of higher acritarch diversity in the lower Chuar and Uinta Mountain groups, and the presence of vase-shaped microfossils in the upper intervals of all three ChUMP units. Comparisons of δ 13 C org and δ 13 C carb among ChUMP successions suggest a combination of local and regional controls. Thus, ChUMP successions are coeval within the 780−740 Ma range, show similar fossil and C-isotope trends, and derived sediments from similar Laurentian sources or source types. In light of recent age constraints and compiled paleontology in other Neoproterozoic basins, our high-resolution correlation of ChUMP successions can be extended to the Callison Lake dolostone of NW Canada and the Akademikerbreen-Polarisbreen groups of Svalbard. Biostratigraphic correlation with poorly age-constrained strata such as the Akademikerbreen-Polarisbreen groups and, farther afield, the Visingso Group of Baltica suggests that ChUMP units record continentwide—and perhaps global—evolutionary patterns. The δ 13 C org and δ 13 C carb values in the Chuar Group and its equivalents in Canada and Svalbard show broadly similar trends, including the APCIE, suggesting that δ 13 C org values from organic-rich shale record variations in the C-isotope composition of late Tonian oceans. Intracratonic basins and contiguous rift margins of ChUMP age are inferred to have been important locations for microbial productivity and significant organic carbon burial that induced large positive shifts in δ 13 C and changes in global carbon balance prior to the onset of snowball Earth.

[1]  S. Porter,et al.  Organic-walled microfossils of the mid-Neoproterozoic Alinya Formation, Officer Basin, Australia , 2016, Journal of Paleontology.

[2]  S. Porter,et al.  Systematics of organic-walled microfossils from the ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona , 2016, Journal of Paleontology.

[3]  M. Kunzmann,et al.  Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth , 2016 .

[4]  S. Porter Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA , 2016, Proceedings of the Royal Society B: Biological Sciences.

[5]  G. Halverson,et al.  A new rock-based definition for the Cryogenian Period (circa 720 - 635 Ma) , 2016 .

[6]  J. Hope,et al.  Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth , 2016, Geobiology.

[7]  F. Macdonald,et al.  The Proterozoic Record of Eukaryotes , 2015, Paleobiology.

[8]  F. Horton Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? , 2015 .

[9]  D. Schrag,et al.  Tectonostratigraphic evolution of the c. 780–730 Ma Beck Spring Dolomite: Basin Formation in the core of Rodinia , 2015, Special Publications.

[10]  F. Macdonald,et al.  A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations , 2015 .

[11]  C. Junium,et al.  Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard , 2014 .

[12]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[13]  R. Mahon,et al.  Detrital zircon provenance and paleogeography of the Pahrump Group and overlying strata, Death Valley, California , 2014 .

[14]  P. Link,et al.  Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, west-central U.S.: Protracted rifting, glaciation, and evolution of the North American Cordilleran margin , 2014 .

[15]  A. Knoll,et al.  740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy , 2014 .

[16]  C. Dehler Advances in Neoproterozoic biostratigraphy spark new correlations and insight in evolution of life , 2014 .

[17]  R. Mahon,et al.  Geochronologic and stratigraphic constraints on the Mesoproterozoic and Neoproterozoic Pahrump Group, Death Valley, California: A record of the assembly, stability, and breakup of Rodinia , 2014 .

[18]  F. Macdonald,et al.  Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth , 2013, Proceedings of the National Academy of Sciences.

[19]  P. Link,et al.  Sequence stratigraphy and formalization of the Middle Uinta Mountain Group (Neoproterozoic), central Uinta Mountains, Utah: A closer look at the western Laurentian Seaway at ca. 750Ma , 2013 .

[20]  Zheng‐Xiang Li,et al.  Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland , 2013 .

[21]  Dyanna M. Czeck,et al.  Strain accumulation and fluid–rock interaction in a naturally deformed diamictite, Willard thrust system, Utah (USA): Implications for crustal rheology and strain softening , 2013 .

[22]  P. Mueller,et al.  Crustal growth and tectonic evolution of the Mojave crustal province: Insights from hafnium isotope systematics in zircons , 2013 .

[23]  Peter A. Cawood,et al.  Detrital zircon record and tectonic setting , 2012 .

[24]  A. Maloof,et al.  Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion , 2012 .

[25]  P. Link,et al.  Constraining the timing and provenance of the Neoproterozoic Little Willow and Big Cottonwood Formations, Utah: Expanding the sedimentary record for early rifting of Rodinia , 2012 .

[26]  A. Maloof,et al.  Constraints on the origin and relative timing of the Trezona δ13C anomaly below the end-Cryogenian glaciation , 2012 .

[27]  James V. Jones,et al.  Basin formation near the end of the 1.60–1.45 Ga tectonic gap in southern Laurentia: Mesoproterozoic Hess Canyon Group of Arizona and implications for ca. 1.5 Ga supercontinent configurations , 2012 .

[28]  Cara L. Harwood,et al.  Microbialites of the Neoproterozoic Beck Spring Dolomite, Southern California , 2011 .

[29]  A. Knoll,et al.  Biologically induced initiation of Neoproterozoic snowball-Earth events , 2011, Proceedings of the National Academy of Sciences.

[30]  B. Wernicke,et al.  The Neoproterozoic Noonday Formation, Death Valley region, California , 2011 .

[31]  G. Gehrels,et al.  Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona , 2011 .

[32]  S. Nelson,et al.  A reassessment of Mojavia and a new Cheyenne Belt alignment in the eastern Great Basin , 2011 .

[33]  Peter J. Voice,et al.  Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains , 2011, The Journal of Geology.

[34]  M. Bazhenov,et al.  The origin of microcontinents in the Central Asian Orogenic Belt: Constraints from paleomagnetism and geochronology , 2011 .

[35]  G. Gehrels,et al.  Archean detrital zircons in the Proterozoic Vishnu Schist of the Grand Canyon, Arizona: Implications for crustal architecture and Nuna supercontinent reconstructions , 2010 .

[36]  P. Link,et al.  Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia , 2010 .

[37]  Vladimir N. Sergeev,et al.  Taxonomy, Paleoecology and Biostratigraphy of the Late Neoproterozoic Chichkan Microbiota of South Kazakhstan: The Marine Biosphere on the Eve of Metazoan Radiation , 2010, Journal of Paleontology.

[38]  A. Maloof,et al.  Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling , 2010, Science.

[39]  David S. Jones,et al.  Calibrating the Cryogenian , 2010, Science.

[40]  A. Knoll,et al.  An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA , 2010 .

[41]  S. Bertilsson,et al.  Infrequent marine-freshwater transitions in the microbial world. , 2009, Trends in microbiology.

[42]  Yanan Shen,et al.  Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation , 2009 .

[43]  J. Wooden,et al.  Assembling and Disassembling California: A Zircon and Monazite Geochronologic Framework for Proterozoic Crustal Evolution in Southern California , 2009, The Journal of Geology.

[44]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[45]  G. Gehrels,et al.  Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico , 2008 .

[46]  G. Gehrels,et al.  Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry , 2008 .

[47]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[48]  Steven J. Whitmeyer,et al.  Tectonic model for the Proterozoic growth of North America , 2007 .

[49]  D. Mogk,et al.  Detrital mineral chronology of the Uinta Mountain Group: Implications for the Grenville flood in southwestern Laurentia , 2007 .

[50]  J. Bartley,et al.  Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): Signal recovery in a fold-and-thrust belt , 2007 .

[51]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[52]  G. Gehrels,et al.  Mudstone Petrology of the Mesoproterozoic Unkar Group, Grand Canyon, U.S.A.: Provenance, Weathering, and Sediment Transport on Intracratonic Rodinia , 2006 .

[53]  J. Geissman,et al.  A new paleomagnetic pole for the Neoproterozoic Uinta Mountain supergroup, Central Rocky Mountain States, USA , 2006 .

[54]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  J. Miller,et al.  40Ar/39Ar dating of mica-bearing pyrite from thermally overprinted Archean gold deposits , 2006 .

[56]  Y. Liu,et al.  Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? , 2006 .

[57]  J. Vervoort,et al.  Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence , 2006 .

[58]  S. Xiao,et al.  1.3 Billion years of acritarch history: An empirical morphospace approach , 2006 .

[59]  G. Gehrels,et al.  Tectonic inferences from the ca. 1255–1100 Ma Unkar Group and Nankoweap Formation, Grand Canyon: Intracratonic deformation and basin formation during protracted Grenville orogenesis , 2005 .

[60]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[61]  J. Geissman,et al.  Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: implications for Laurentia’s Neoproterozoic APWP and Rodinia break-up , 2004 .

[62]  S. Harlan,et al.  Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions , 2003 .

[63]  A. J. Kaufman,et al.  Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California , 2003 .

[64]  G. Ramstein,et al.  The Sturtian ‘snowball’ glaciation: fire and ice , 2003 .

[65]  A. Knoll,et al.  VASE-SHAPED MICROFOSSILS FROM THE NEOPROTEROZOIC CHUAR GROUP, GRAND CANYON: A CLASSIFICATION GUIDED BY MODERN TESTATE AMOEBAE , 2003, Journal of Paleontology.

[66]  Zheng‐Xiang Li Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia , 2003 .

[67]  Frank A Corsetti,et al.  A complex microbiota from snowball Earth times: Microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  V. McLemore,et al.  Intermittent 1630–1220 Ma magmatism in central Mazatzal province: New geochronologic piercing points and some tectonic implications , 2003 .

[69]  Gary A. Smith,et al.  Neoproterozoic Chuar Group (̃800-742 Ma), Grand Canyon: a record of cyclic marine deposition during global cooling and supercontinent rifting , 2001 .

[70]  G. L. Farmer,et al.  Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: constraints from geochemistry, Nd isotopes, and detrital modes , 2001 .

[71]  L. P. Knauth,et al.  Stable isotope variations in the Neoproterozoic Beck Spring Dolomite and Mesoproterozoic Mescal Limestone paleokarst: Implications for life on land in the Precambrian , 2001 .

[72]  P. Szatmari,et al.  Single-crystal 40Ar-39Ar dating of pyrite: No fool's clock , 2001 .

[73]  K. Karlstrom,et al.  Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the Grand Canyon Supergroup and establishment of northwest- and north-trending tectonic grains in the southwestern United States , 2001 .

[74]  S. Marshak,et al.  Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States , 2000 .

[75]  A. Knoll,et al.  Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. , 2000, Geology.

[76]  A. Knoll,et al.  Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon , 2000, Paleobiology.

[77]  Andrew C. Hill,et al.  Mid-Neoproterozoic biostratigraphy and isotope stratigraphy in Australia , 2000 .

[78]  W. Preiss The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction , 2000 .

[79]  T. Ehlers,et al.  Tidal Sedimentology and Estuarine Deposition of the Proterozoic Big Cottonwood Formation, Utah , 1999 .

[80]  A. Prave Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California: Comment and Reply , 1999 .

[81]  H. Strauss,et al.  Stable carbon and oxygen isotope geochemistry of the upper Visingsö Group (early Neoproterozoic), southern Sweden , 1999, Geological Magazine.

[82]  K. Karlstrom,et al.  Persistent influence of Proterozoic accretionary boundaries in the tectonic evolution of southwestern North America Interaction of cratonic grain and mantle modification events , 1998 .

[83]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[84]  R. J. Horodyski Paleontology of proterozoic shales and mudstones: examples from the Belt supergroup, Chuar group and Pahrump group, western USA , 1993 .

[85]  R. Osborne,et al.  Petrology, petrochemistry, and stromatolites of the Middle to Late Proterozoic Beck Spring Dolomite, eastern Mojave Desert, California , 1992 .

[86]  J. Grotzinger,et al.  1.08 Ga diabase sills in the Pahrump Group, California: Implications for development of the Cordilleran miogeocline , 1992 .

[87]  A. Knoll,et al.  Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen , 1991, Journal of Paleontology.

[88]  A. Knoll,et al.  Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen , 1989, Journal of Paleontology.

[89]  W. Dean,et al.  Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary , 1988, Nature.

[90]  W. Zempolich,et al.  Diagenesis of late Proterozoic carbonates; the Beck Spring Dolomite of eastern California , 1988 .

[91]  Ivan D. Sanderson,et al.  The Jesse Ewing Canyon Formation, an Interpreted Alluvial Fan Deposit in the Basal Uinta Mountain Group (Middle Proterozoic), Utah , 1986, Mountain Geologist.

[92]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[93]  M. Tucker Diagenesis, Geochemistry, and Origin of a Precambrian Dolomite: the Beck Spring Dolomite of Eastern California , 1983 .

[94]  I. Lucchitta,et al.  Characteristics, depositional environment, and tectonic interpretations of the Proterozoic Cardenas Lavas, eastern Grand Canyon, Arizona , 1983 .

[95]  G. R. Licari,et al.  Biogeology of the late pre-Phanerozoic Beck Spring Dolomite of eastern California , 1978 .

[96]  T. Ford,et al.  Late Precambrian Chuar Group, Grand Canyon, Arizona , 1973 .

[97]  P. Cloud,et al.  Proterozoic eucaryotes from eastern california. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[98]  C. Gundy NANKOWEAP GROUP OF THE GRAND CANYON ALGONKIAN OF ARIZONA , 1951 .

[99]  J. Valley,et al.  Proterozoic Evolution of the Mojave Crustal Province as Preserved in the Ivanpah Mountains, Southeastern California , 2013 .

[100]  K. Grey,et al.  Chapter 8 Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia in a global context , 2011 .

[101]  D. Rybczyński Correlation, Paleogeography, and Provenance of the Neoproterozoic Eastern Uinta Mountain Group, Goslin Mountain Area, Northeastern Utah , 2009 .

[102]  S. Porter,et al.  The Neoproterozoic Uinta Mountain Group Revisited: A Synthesis of Recent Work on the Red Pine Shale and Related Undivided Clastic Strata, Northeastern Utah, U.S.A. , 2007 .

[103]  C. Dehler,et al.  Stratigraphy and Facies Analysis of the Eastern Uinta Mountain Group, Utah-Colorado Border Region , 2005 .

[104]  D. D. Marais,et al.  Grand Canyon : Implications for mid-Neoproterozoic climate change , 2022 .

[105]  L. M. Martínez-Torres,et al.  Isotopic, geochemical, and temporal characterization of Proterozoic basement rocks in the Quitovac region, northwestern Sonora, Mexico: Implications for the reconstruction of the southwestern margin of Laurentia , 2004 .

[106]  M. M. Mus,et al.  Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visings Group, Sweden , 2000 .

[107]  M. Crittenden,et al.  The Stratigraphy, Depositional Environment and Correlation of the Precambrian Uinta Mountain Group, Western Uinta Mountains, Utah , 1969 .

[108]  W. Hansen Geology of the Flaming Gorge area, Utah-Colorado-Wyoming , 1965 .

[109]  S. Rauzi Distribution of Proterozoic Hydrocarbon Source Rock in Northern Arizona and Southern Utah , 2022 .