Measuring rank correlation coefficients between financial time series: A GARCH-copula based sequence alignment algorithm

[1]  Peter Grundke,et al.  Crisis and risk dependencies , 2012, Eur. J. Oper. Res..

[2]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[3]  Dirk P. Kroese,et al.  Efficient estimation of large portfolio loss probabilities in t-copula models , 2010, Eur. J. Oper. Res..

[4]  Cathy Ning,et al.  Dependence structure between the equity market and the foreign exchange market–A copula approach , 2010 .

[5]  Wolfgang Hörmann,et al.  Efficient risk simulations for linear asset portfolios in the t-copula model , 2010, Eur. J. Oper. Res..

[6]  Lukas Pichl,et al.  Symbolic analysis of indicator time series by quantitative sequence alignment , 2008, Comput. Stat. Data Anal..

[7]  Katsuhiko Hayashi,et al.  Correlation patterns of NIKKEI index constituents , 2007 .

[8]  Jonathan B. Hill Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money–income relationship , 2007 .

[9]  Lukas Pichl,et al.  On the Symbolic Analysis of Market Indicators with the Dynamic Programming Approach , 2006, ISNN.

[10]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[11]  Peter Bühlmann,et al.  Synchronizing multivariate financial time series , 2004 .

[12]  R. Rigobón,et al.  No Contagion, Only Interdependence: Measuring Stock Market Comovements , 2002 .

[13]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[14]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[15]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[16]  D. Mount Bioinformatics: Sequence and Genome Analysis , 2001 .

[17]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[18]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[19]  R. Nelsen An Introduction to Copulas , 1998 .

[20]  H. Joe Multivariate models and dependence concepts , 1998 .

[21]  Norman R. Swanson,et al.  Money and output viewed through a rolling window , 1998 .

[22]  Patrick Burns,et al.  Correlations and Volatilities of Asynchronous Data , 1998 .

[23]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[24]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[25]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[26]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[27]  R. Engle,et al.  Semiparametric ARCH Models , 1991 .

[28]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[29]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[30]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[31]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[32]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[33]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[34]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[35]  E. Myers,et al.  Approximate matching of regular expressions. , 1989, Bulletin of mathematical biology.