Cholinergic activation of the lobster cardiac ganglion.

The frequency of rhythmic burst activity of the isolated lobster cardiac ganglion is increased by exogenously applied acetylcholine and muscarinic agonists. Responses of individual motor neurons isolated from the ganglion by transection consist of a slow depolarization and repetitive bursting. The pharmacological profile of the receptors mediating this response is similar to that of vertebrate neuronal muscarinic receptors. Isolated ganglia incubated in the presence of [3H]-choline (18-19 h) exhibited radiolabelled acetylcholine accumulation. It is suggested that ganglionic excitation may be accomplished by extrinsic or intrinsic activation of muscarinic receptors on the motor neurons.

[1]  J. Brown Atropine, scopolamine and related antimuscarinic drugs , 1990 .

[2]  D. Livengood,et al.  Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. , 1989, Journal of neurophysiology.

[3]  B Mulloney,et al.  Modulation of the crayfish swimmeret rhythm by octopamine and the neuropeptide proctolin. , 1987, Journal of neurophysiology.

[4]  I. Cooke,et al.  Structure and localization of synaptic complexes in the cardiac ganglion of a portunid crab , 1987, Journal of neurocytology.

[5]  K. Tazaki,et al.  Currents under voltage clamp of burst-forming neurons of the cardiac ganglion of the lobster (Homarus americanus). , 1986, Journal of neurophysiology.

[6]  G. Mpitsos,et al.  Characterization of Muscarinic Cholinergic Receptors in the Crab Nervous System , 1986, Journal of neurochemistry.

[7]  E. Marder,et al.  Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. , 1984, Journal of neurophysiology.

[8]  M. Miller,et al.  Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. , 1984, Journal of Neurobiology.

[9]  P. S. Dickinson,et al.  Control of a central pattern generator by an identified modulatory interneurone in crustacea. II. Induction and modification of plateau properties in pyloric neurones. , 1983, The Journal of experimental biology.

[10]  P. S. Dickinson,et al.  Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. , 1983, The Journal of experimental biology.

[11]  C. Lingle Blockade of cholinergic channels by chlorisondamine on a crustacean muscle. , 1983, The Journal of physiology.

[12]  M. Miller,et al.  Some effects of proctolin on the cardiac ganglion of the Maine Lobster, Homarus americanus (Milne Edwards). , 1981, Journal of neurobiology.

[13]  D. F. Russell,et al.  A multiaction synapse evoking both EPSPs and enhancement of endogenous bursting , 1981, Brain Research.

[14]  D. Barker,et al.  [3H]Choline Uptake and Metabolism in Nonsynaptic Regions of a Crustacean Sensory Nerve , 1981, Journal of neurochemistry.

[15]  E. Marder,et al.  Picrotoxin block of a depolarizing ACh response , 1980, Brain Research.

[16]  E. Florey,et al.  Pharmacological characterization of cholinoreceptors of cardiac ganglion cells of crustaceans. , 1980, General pharmacology.

[17]  D. F. Russell CNS control of pattern generators in the lobster stomatogastric ganglion , 1979, Brain Research.

[18]  K. Tazaki,et al.  Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[19]  K. Tazaki,et al.  Ionic bases of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[20]  E. Marder,et al.  The pharmacological properties of some crustacean neuronal acetylcholine, gamma‐aminobutyric acid, and L‐glutamate responses. , 1978, The Journal of physiology.

[21]  Y. Dudai,et al.  Muscarinic receptor in Drosophila melanogaster demonstrated by binding of [3H]quinuclidinyl benzilate , 1977, FEBS letters.

[22]  E. Marder Cholinergic motor neurones in the stomatogastric system of the lobster. , 1976, The Journal of physiology.

[23]  E. Kravitz,et al.  Acetylcholine and lobster sensory neurones , 1972, The Journal of physiology.

[24]  I. Cooke,et al.  Neural activation of the heart of the lobster Homarus americanus. , 1971, The Journal of experimental biology.

[25]  E. Kravitz,et al.  Screening for neurotransmitters: a rapid radiochemical procedure. , 1971, Journal of neurobiology.

[26]  J. Connor,et al.  Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. , 1969, The Journal of experimental biology.

[27]  D. Potter,et al.  Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. , 1967, Journal of neurophysiology.

[28]  E. Florey ACETYLCHOLINE IN INVERTEBRATE NERVOUS SYSTEMS. , 1963, Canadian journal of biochemistry and physiology.

[29]  S. Hagiwara,et al.  Nervous activities of the heart in Crustacea. , 1961, Ergebnisse der Biologie.

[30]  C. Terzuolo,et al.  Acceleration and inhibition in crustacean ganglion cells , 1958 .

[31]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. II. PATTERN AND INTERACTION IN BURST FORMATION , 1955 .

[32]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. I. CARDIO-INHIBITION AND ACCELERATION IN PANULIRUS ARGUS , 1953 .

[33]  R. Smith The action of electrical stimulation and of certain drugs on cardiac nerves of the crab, Cancer irroratus. , 1947, The Biological bulletin.

[34]  C. A. G. Wiersma,et al.  The Mechanism of the Nervous Regulation of the Crayfish Heart , 1942 .

[35]  C. Prosser AN ANALYSIS OF THE ACTION OF ACETYLCHOLINE ON HEARTS, PARTICULARLY IN ARTHROPODS , 1942 .

[36]  D. Davenport FURTHER STUDIES IN THE PHARMACOLOGY OF THE HEART OF CANCER MAGISTER DANA , 1942 .

[37]  D. Davenport The Effects of Acetylcholine, Atropine, and Nicotine on the Isolated Heart of the Commercial Crab, Cancer magister Dana , 1941, Physiological Zoology.

[38]  J. Welsh Chemical Mediation in Crustaceans: I. The Occurrence of Acetylcholine in Nervous Tissues and its Action on the Decapod Heart , 1939 .