Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons

[1]  Sabrina Ravel,et al.  Influence of spatial information on responses of tonically active neurons in the monkey striatum. , 1998, Journal of neurophysiology.

[2]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[3]  R. Wightman,et al.  Dopamine Operates as a Subsecond Modulator of Food Seeking , 2004, The Journal of Neuroscience.

[4]  A. Goodie,et al.  Time-Pressure Effects on Performance in a Base-Rate Task , 2004, The Journal of general psychology.

[5]  M. D. Crutcher,et al.  Single cell studies of the primate putamen , 2004, Experimental Brain Research.

[6]  P. Garris,et al.  Real‐time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing , 2004, Journal of neurochemistry.

[7]  W. Schultz,et al.  Coding of Predicted Reward Omission by Dopamine Neurons in a Conditioned Inhibition Paradigm , 2003, The Journal of Neuroscience.

[8]  Tatsuo K Sato,et al.  Correlated Coding of Motivation and Outcome of Decision by Dopamine Neurons , 2003, The Journal of Neuroscience.

[9]  Sabrina Ravel,et al.  Responses of Tonically Active Neurons in the Monkey Striatum Discriminate between Motivationally Opposing Stimuli , 2003, The Journal of Neuroscience.

[10]  P. Calabresi,et al.  Targeting striatal cholinergic interneurons in Parkinson’s disease: Focus on metabotropic glutamate receptors , 2003, Neuropharmacology.

[11]  D. Watanabe,et al.  Impairment of reward-related learning by cholinergic cell ablation in the striatum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Kimura,et al.  Goal-directed, serial and synchronous activation of neurons in the primate striatum , 2003, Neuroreport.

[13]  J. Assad,et al.  Putaminal activity for simple reactions or self-timed movements. , 2003, Journal of neurophysiology.

[14]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[15]  J. A. Dani,et al.  Muscarinic and Nicotinic Cholinergic Mechanisms in the Mesostriatal Dopamine Systems , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[16]  P. Calabresi,et al.  Dopamine, Acetylcholine and Nitric Oxide Systems Interact to Induce Corticostriatal Synaptic Plasticity , 2003, Reviews in the neurosciences.

[17]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[18]  A. Graybiel,et al.  A Network Representation of Response Probability in the Striatum , 2002, Neuron.

[19]  M. Brin,et al.  Anticholinergic therapies in the treatment of Parkinson's disease , 2002 .

[20]  J. Bolam,et al.  Presynaptic localisation of the nicotinic acetylcholine receptor β2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones , 2001, The Journal of comparative neurology.

[21]  O. Hikosaka,et al.  Role of Tonically Active Neurons in Primate Caudate in Reward-Oriented Saccadic Eye Movement , 2001, The Journal of Neuroscience.

[22]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[23]  P. Apicella,et al.  Reward Unpredictability inside and outside of a Task Context as a Determinant of the Responses of Tonically Active Neurons in the Monkey Striatum , 2001, The Journal of Neuroscience.

[24]  W. Schultz,et al.  Dopamine responses comply with basic assumptions of formal learning theory , 2001, Nature.

[25]  Roland E. Suri,et al.  Temporal Difference Model Reproduces Anticipatory Neural Activity , 2001, Neural Computation.

[26]  J. Wickens,et al.  Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. , 2001, Journal of neurophysiology.

[27]  S. Cragg,et al.  Dopamine Release and Uptake Dynamics within Nonhuman Primate Striatum In Vitro , 2000, The Journal of Neuroscience.

[28]  R. Carpenter,et al.  The influence of urgency on decision time , 2000, Nature Neuroscience.

[29]  P. Greengard,et al.  D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. , 2000, Journal of neurophysiology.

[30]  P. Calabresi,et al.  Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[31]  Michael B. Miller,et al.  The Left Hemisphere's Role in Hypothesis Formation , 2000, The Journal of Neuroscience.

[32]  P. Calabresi,et al.  Acetylcholine-mediated modulation of striatal function , 2000, Trends in Neurosciences.

[33]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[34]  Nir Vulkan An Economist's Perspective on Probability Matching , 2000 .

[35]  Richard F. Martin,et al.  Primate brain maps : structure of the macaque brain , 2000 .

[36]  Douglas M. Bowden,et al.  Primate brain maps , 2000 .

[37]  P. Calabresi,et al.  Permissive role of interneurons in corticostriatal synaptic plasticity , 1999, Brain Research Reviews.

[38]  P. Calabresi,et al.  Unilateral dopamine denervation blocks corticostriatal LTP. , 1999, Journal of neurophysiology.

[39]  Sabrina Ravel,et al.  Tonically active neurons in the monkey striatum do not preferentially respond to appetitive stimuli , 1999, Experimental Brain Research.

[40]  A. Graybiel,et al.  Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. , 1999, Journal of neurophysiology.

[41]  Charles J. Wilson,et al.  Spontaneous Activity of Neostriatal Cholinergic Interneurons In Vitro , 1999, The Journal of Neuroscience.

[42]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[43]  P. Calabresi,et al.  Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP , 1999, Neuropharmacology.

[44]  P. Calabresi,et al.  Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses , 1998 .

[45]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[46]  Eric Legallet,et al.  Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states , 1997, Experimental Brain Research.

[47]  A. Graybiel,et al.  Neurochemical architecture of the human striatum , 1997, The Journal of comparative neurology.

[48]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[49]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[50]  E. Vaadia,et al.  Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. , 1996, Journal of neurophysiology.

[51]  E. Abercrombie,et al.  Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. , 1996, The Journal of pharmacology and experimental therapeutics.

[52]  R. H. S. Carpenter,et al.  Neural computation of log likelihood in control of saccadic eye movements , 1995, Nature.

[53]  A. Graybiel,et al.  Temporal and spatial characteristics of tonically active neurons of the primate's striatum. , 1995, Journal of neurophysiology.

[54]  D. James Surmeier,et al.  Molecular and cellular mechanisms of neostriatal function , 1995 .

[55]  B. Sutor,et al.  Cholinergic modulation of dopamine overflow in the rat neostriatum: A fast cyclic voltammetric study in vitro , 1994, Neuroscience Letters.

[56]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[57]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[58]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  D. Calne,et al.  Treatment of Parkinson's disease. , 1993, The New England journal of medicine.

[60]  Kitai St,et al.  Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. , 1993 .

[61]  D. James Surmeier,et al.  Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons , 1990, Nature.

[62]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  A. Parent,et al.  Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry , 1989, The Journal of comparative neurology.

[64]  J. C. Stoof,et al.  Stimulation of D‐2 Dopamine Receptors Decreases the Evoked In Vitro Release of [3H] Acetylcholine from Rat Neostriatum: Role of K+ and Ca2+ , 1989, Journal of neurochemistry.

[65]  C. Négre [Treatment of Parkinson's disease]. , 1986, Soins; la revue de reference infirmiere.

[66]  G. E. Alexander,et al.  Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. , 1985, Journal of neurophysiology.

[67]  W. Cowan,et al.  A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[68]  A. Grace,et al.  Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—3. Evidence for electrotonic coupling , 1983, Neuroscience.

[69]  W. Baum,et al.  Matching, undermatching, and overmatching in studies of choice. , 1979, Journal of the experimental analysis of behavior.

[70]  R. Herrnstein On the law of effect. , 1970, Journal of the experimental analysis of behavior.

[71]  A. I. Esakov,et al.  [Spontaneous activity]. , 1968, Vestnik Akademii meditsinskikh nauk SSSR.

[72]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[73]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[74]  A. Barbeau The pathogenesis of Parkinson's disease: a new hypothesis. , 1962, Canadian Medical Association journal.