Volume Illustration: Nonphotorealistic Rendering of Volume Models

Accurately and automatically conveying the structure of a volume model is a problem which has not been fully solved by existing volume rendering approaches. Physics-based volume rendering approaches create images which may match the appearance of translucent materials in nature but may not embody important structural details. Transfer function approaches allow flexible design of the volume appearance but generally require substantial hand-tuning for each new data set in order to be effective. We introduce the volume illustration approach, combining the familiarity of a physics-based illumination model with the ability to enhance important features using non-photorealistic rendering techniques. Since the features to be enhanced are defined on the basis of local volume characteristics rather than volume sample values, the application of volume illustration techniques requires less manual tuning than the design of a good transfer function. Volume illustration provides a flexible unified framework for enhancing the structural perception of volume models through the amplification of features and the addition of illumination effects.

[1]  László Neumann,et al.  Gradient Estimation in Volume Data using 4D Linear Regression , 2000, Comput. Graph. Forum.

[2]  Victoria Interrante,et al.  Enhancing transparent skin surfaces with ridge and valley lines , 1995, Proceedings Visualization '95.

[3]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[4]  M. Carter Computer graphics: Principles and practice , 1997 .

[5]  David H. Laidlaw,et al.  Using concepts from painting , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[6]  Nelson L. Max,et al.  A volume density optical model , 1992, VVS.

[7]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[8]  Victoria Interrante,et al.  Line direction matters: an argument for the use of principal directions in 3D line drawings , 2000, NPAR '00.

[9]  Elaine Cohen,et al.  A non-photorealistic lighting model for automatic technical illustration , 1998, SIGGRAPH.

[10]  Victoria Interrante,et al.  Conveying the 3D Shape of Smoothly Curving Transparent Surfaces via Texture , 1997, IEEE Trans. Vis. Comput. Graph..

[11]  Min Chen,et al.  Pen-and-ink rendering in volume visualisation , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[12]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[13]  Penny Rheingans,et al.  Opacity-modulating triangular textures for irregular surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[14]  Wolfgang Krüger The application of transport theory to visualization of 3D scalar data fields , 1990, VIS '90.

[15]  Shiaofen Fang,et al.  Image-based transfer function design for data exploration in volume visualization , 1998 .

[16]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[17]  Robert Michael Kirby,et al.  Visualizing multivalued data from 2D incompressible flows using concepts from painting , 1999, VIS '99.

[18]  David Salesin,et al.  Interactive pen-and-ink illustration , 1994, SIGGRAPH.

[19]  David Salesin,et al.  Orientable textures for image-based pen-and-ink illustration , 1997, SIGGRAPH.

[20]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.

[21]  Klaus Mueller,et al.  Evaluation and Design of Filters Using a Taylor Series Expansion , 1997, IEEE Trans. Vis. Comput. Graph..

[22]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[23]  David Salesin,et al.  Computer-generated pen-and-ink illustration , 1994, SIGGRAPH.

[24]  David H. Laidlaw,et al.  Visualizing diffusion tensor images of the mouse spinal cord , 1998 .

[25]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[26]  Takafumi Saito,et al.  Real-time previewing for volume visualization , 1994, VVS '94.

[27]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[28]  Victoria Interrante,et al.  Visualizing 3D Flow , 1998, IEEE Computer Graphics and Applications.

[29]  David S. Ebert,et al.  Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques , 1990, SIGGRAPH.

[30]  Tomoyuki Nishita,et al.  A shading model for atmospheric scattering considering luminous intensity distribution of light sources , 1987, SIGGRAPH.

[31]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[32]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[33]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[34]  Peter-Pike J. Sloan,et al.  Interactive technical illustration , 1999, SI3D.

[35]  Tomoyuki Nishita,et al.  Light Scattering Models for the Realistic Rendering of Natural Scenes , 1998, Rendering Techniques.