Mapping the structure of the planetary 2:1 mean motion resonance: the TOI-216, K2-24, and HD27894 systems

[1]  D. Nesvorný,et al.  TOI-216: Resonant Constraints on Planet Migration , 2021, The Astrophysical Journal.

[2]  Chelsea X. Huang,et al.  Precise Transit and Radial-velocity Characterization of a Resonant Pair: The Warm Jupiter TOI-216c and Eccentric Warm Neptune TOI-216b , 2021, The Astronomical Journal.

[3]  C. Beaug'e,et al.  Semianalytical model for planetary resonances , 2020, Astronomy & Astrophysics.

[4]  C. Giuppone,et al.  Semi-analytical model for planetary resonances: application to planets around single and binary stars , 2020 .

[5]  Michael Ireland,et al.  TOI-216b and TOI-216 c: Two Warm, Large Exoplanets in or Slightly Wide of the 2:1 Orbital Resonance , 2019, The Astronomical Journal.

[6]  Guillermo Torres,et al.  A resonant pair of warm giant planets revealed by TESS , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[8]  Drake Deming,et al.  Dynamics and Formation of the Near-resonant K2-24 System: Insights from Transit-timing Variations and Radial Velocities , 2018, The Astronomical Journal.

[9]  J. Steffen,et al.  Systematic mischaracterization of exoplanetary system dynamical histories from a model degeneracy near mean-motion resonance , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  C. Charalambous,et al.  Orbital migration and Resonance Offset of the Kepler-25 and K2-24 systems , 2017, 1803.05971.

[11]  T. Trifonov,et al.  Three planets around HD 27894. A close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 AU , 2017, 1706.00509.

[12]  C. Charalambous,et al.  Planetary migration and the origin of the 2:1 and 3:2 (near)-resonant population of close-in exoplanets , 2017, 1704.06459.

[13]  F. Adams,et al.  An Analytic Criterion for Turbulent Disruption of Planetary Resonances , 2017, 1701.07849.

[14]  Fei Dai,et al.  DOPPLER MONITORING OF FIVE K2 TRANSITING PLANETARY SYSTEMS , 2016, 1604.01413.

[15]  Howard Isaacson,et al.  TWO TRANSITING LOW DENSITY SUB-SATURNS FROM K2 , 2015, 1511.04497.

[16]  T. Trifonov,et al.  Disentangling 2:1 resonant radial velocity orbits from eccentric ones and a case study for HD 27894 , 2015, 1503.07769.

[17]  E. Ford,et al.  PLANETESIMAL INTERACTIONS CAN EXPLAIN THE MYSTERIOUS PERIOD RATIOS OF SMALL NEAR-RESONANT PLANETS , 2014, 1406.0521.

[18]  A. Quirrenbach,et al.  Precise radial velocities of giant stars - VI. A possible 2:1 resonant planet pair around the K giant star η Ceti , 2014, 1407.0712.

[19]  J. Laskar,et al.  Tidal dissipation and the formation of Kepler near-resonant planets , 2014, 1406.0694.

[20]  J. Laskar,et al.  Resonance breaking due to dissipation in planar planetary systems , 2014, 1404.4861.

[21]  P. Goldreich,et al.  OVERSTABLE LIBRATIONS CAN ACCOUNT FOR THE PAUCITY OF MEAN MOTION RESONANCES AMONG EXOPLANET PAIRS , 2013, 1308.4688.

[22]  Katherine M. Deck,et al.  FIRST-ORDER RESONANCE OVERLAP AND THE STABILITY OF CLOSE TWO-PLANET SYSTEMS , 2013, 1307.8119.

[23]  A. Morbidelli,et al.  Analytical treatment of planetary resonances , 2013, 1305.6513.

[24]  C. Giuppone,et al.  Origin and detectability of co-orbital planets from radial velocity data , 2011, 1112.0223.

[25]  R. Paul Butler,et al.  THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION , 2010, 1006.4244.

[26]  T. Hinse,et al.  Application of the MEGNO technique to the dynamics of Jovian irregular satellites , 2009, 0907.4886.

[27]  G. Voyatzis,et al.  On the 2/1 resonant planetary dynamics – periodic orbits and dynamical stability , 2009 .

[28]  S. Ferraz-Mello,et al.  DETECTABILITY AND ERROR ESTIMATION IN ORBITAL FITS OF RESONANT EXTRASOLAR PLANETS , 2009, 0905.0433.

[29]  J. Bean,et al.  The architecture of the GJ 876 planetary system - Masses and orbital coplanarity for planets b and c , 2009, 0901.3144.

[30]  M. López-Morales,et al.  HOW ECCENTRIC ORBITAL SOLUTIONS CAN HIDE PLANETARY SYSTEMS IN 2:1 RESONANT ORBITS , 2008, 0809.1275.

[31]  S. Ferraz-Mello,et al.  Dynamic portrait of the planetary 2/1 mean‐motion resonance – II. Systems with a more massive inner planet , 2008 .

[32]  S. Ferraz-Mello,et al.  Reliability of orbital fits for resonant extrasolar planetary systems: the case of HD82943 , 2008 .

[33]  S. Ferraz-Mello,et al.  Planetary migration and extrasolar planets in the 2/1 mean-motion resonance , 2004, astro-ph/0404166.

[34]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[35]  S. Ferraz-Mello,et al.  Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions , 2002, astro-ph/0210577.

[36]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[37]  C. Beaugé Asymmetric librations in exterior resonances , 1994 .

[38]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .