Suppression During Sustained Visuospatial Attention Active Retinotopic Mechanism for Distracter Increases in Alpha Oscillatory Power Reflect an

[1]  Kristen A Lindgren,et al.  Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients , 1999, Biological Psychiatry.

[2]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[4]  John J. Foxe,et al.  Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[6]  S. Hillyard,et al.  Selective attention to stimulus location modulates the steady-state visual evoked potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Matthias M. Müller,et al.  The time course of cortical facilitation during cued shifts of spatial attention , 1998, Nature Neuroscience.

[8]  T. Mulholland,et al.  Occurrence of the Electroencephalographic Alpha Rhythm with Eyes Open , 1965, Nature.

[9]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[10]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[11]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[12]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[13]  G. Pfurtscheller Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. , 1992, Electroencephalography and clinical neurophysiology.

[14]  E. Vogel,et al.  Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  W. Klimesch,et al.  Intelligence related upper alpha desynchronization in a semantic memory task , 2005, Brain Research Bulletin.

[16]  B. Feige,et al.  Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. , 2005, Journal of neurophysiology.

[17]  Jens Schwarzbach,et al.  Attentional inhibition of visual processing in human striate and extrastriate cortex , 2003, NeuroImage.

[18]  G. Pfurtscheller,et al.  Event-related cortical desynchronization detected by power measurements of scalp EEG. , 1977, Electroencephalography and clinical neurophysiology.

[19]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[20]  G A Orban,et al.  Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. , 2000, Cerebral cortex.

[21]  M. Mazo,et al.  System for assisted mobility using eye movements based on electrooculography , 2002, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[22]  M. Kawato,et al.  Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex. , 2005, Brain research. Cognitive brain research.

[23]  John J. Foxe,et al.  Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study , 2001, Neuropsychologia.

[24]  A. T. Smith,et al.  Attentional suppression of activity in the human visual cortex , 2000, Neuroreport.

[25]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[26]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .

[27]  K. Heilman,et al.  Right hemisphere dominance for attention , 1980, Neurology.

[28]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[29]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[30]  G. V. Simpson,et al.  Parieto‐occipital ∼1 0Hz activity reflects anticipatory state of visual attention mechanisms , 1998 .

[31]  John J. Foxe,et al.  Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations. , 2001, Brain research. Cognitive brain research.

[32]  D. LaBerge,et al.  Attention, consciousness, and electrical wave activity within the cortical column. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[33]  Seppo P. Ahlfors,et al.  Biasing the brain’s attentional set: I. Cue driven deployments of intersensory selective attention , 2005, Experimental Brain Research.

[34]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[35]  Daniel C. Javitt,et al.  Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysis☆ , 2003, NeuroImage.

[36]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[37]  D. LaBerge,et al.  Positron emission tomographic measurements of pulvinar activity during an attention task , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[40]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[41]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[42]  Manuel Schabus,et al.  A shift of visual spatial attention is selectively associated with human EEG alpha activity , 2005, The European journal of neuroscience.

[43]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[44]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[45]  D. Perani,et al.  The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man , 1986, Neuropsychologia.

[46]  C. Brunia,et al.  Anticipatory attention: an event-related desynchronization approach. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[47]  Gregory V. Simpson,et al.  Biasing the brain’s attentional set: II. Effects of selective intersensory attentional deployments on subsequent sensory processing , 2005, Experimental Brain Research.