Phase Contrast MRI Segmentation Using Velocity and Intensity

This paper presents a method for three-dimensional (3D) segmentation of blood vessels, i.e. determining the surface of the vessel wall, using a combination of velocity data and magnitude images obtained using phase contrast MRI. In addition to standard MRI images, phase contrast MRI gives velocity information for blood and tissue in the human body. The proposed method uses a variational formulation of the segmentation problem which combines different cues; velocity and magnitude. The segmentation is performed using the level set method. Experiments on phantom data and clinical data support the proposed method.

[1]  D. Bergel Cardiovascular fluid dynamics , 1972 .

[2]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[3]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[4]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[5]  R. Herfkens,et al.  Phase contrast cine magnetic resonance imaging. , 1991, Magnetic resonance quarterly.

[6]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[7]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[8]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[9]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[10]  T. Ebbers Cardiovascular fluid dynamics : methods for flow and pressure field analysis from magnetic resonance imaging , 2001 .

[11]  Olivier D. Faugeras,et al.  CURVES: Curve evolution for vessel segmentation , 2001, Medical Image Anal..

[12]  Kaleem Siddiqi,et al.  Flux Maximizing Geometric Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[14]  Nikos Paragios,et al.  Shape Priors for Level Set Representations , 2002, ECCV.

[15]  Huafeng Liu,et al.  Segmentation of myocardium using velocity field constrained front propagation , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[16]  Daniel Cremers,et al.  Statistical shape knowledge in variational image segmentation , 2002 .

[17]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[18]  N. Paragios,et al.  A level set approach for shape-driven segmentation and tracking of the left ventricle , 2003, IEEE Transactions on Medical Imaging.

[19]  Rachid Deriche,et al.  Adaptive Segmentation of Vector Valued Images , 2003 .

[20]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[21]  Alfred M. Bruckstein,et al.  Regularized Laplacian Zero Crossings as Optimal Edge Integrators , 2003, International Journal of Computer Vision.

[22]  Maxime Descoteaux,et al.  Geometric Flows for Segmenting Vasculature in MRI: Theory and Validation , 2004, MICCAI.

[23]  Anders Heyden,et al.  Velocity Based Segmentation in Phase Contrast MRI Images , 2004, MICCAI.

[24]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[25]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[26]  Joachim Weickert,et al.  Scale Space and PDE Methods in Computer Vision, 5th International Conference, Scale-Space 2005, Hofgeismar, Germany, April 7-9, 2005, Proceedings , 2005, Scale-Space.

[27]  Niels Chr. Overgaard,et al.  An Analysis of Variational Alignment of Curves in Images , 2005, Scale-Space.