Corona discharge processes

Applications of corona discharge induced plasmas and unipolar ions are reviewed. Corona process applications emphasize one of two aspects of the discharge: the ions produced or the energetic electrons producing the plasma. The ion identities depend on the polarity of the discharge and the characteristics of the gas mixture, specifically on the electron attaching species. The electron energies depend on the gas characteristics and on the method of generating the corona. In general, in an application using ions, the corona induced plasma zone will occupy a small fraction of the total process volume, while a process using the electrons will fill most of the volume with the plasma. Current state-of-the knowledge of ionized environments and the function of corona discharge processes are discussed in detail. >

[1]  Kinetics of the Reaction between Gaseous Ammonia and Sulfuric Acid Droplets in an Aerosol , 1958 .

[2]  Wolfgang Hermstein Die Stromfaden-Entladung und ihr Übergang in das Glimmen , 1960 .

[3]  F. McTaggart Plasma chemistry in electrical discharges , 1967 .

[4]  A. W. Castleman,et al.  Nucleation processes and aerosol chemistry , 1974 .

[5]  D. I. Carroll,et al.  Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system , 1975 .

[6]  R. Cary,et al.  Neutralization of sulfuric acid aerosol by ammonia , 1980 .

[7]  K. Akutsu,et al.  Enhancement of electron beam denitrization process by means of electric field , 1981 .

[8]  Aerosol particle growth rates in an ionized environment , 1983 .

[9]  J. Gentry,et al.  Investigation of the reaction between single aerosol acid droplets and ammonia gas , 1984 .

[10]  M. Steinberg,et al.  Systems study for the removal, recovery, and disposal of carbon dioxide from fossil fuel power plants in the US , 1985 .

[11]  Negative corona in wire-plate electrostatic precipitators. Part II: Calculation of electrical characteristics of contaminated discharge electrodes , 1986 .

[12]  G. H. Ramsey,et al.  Negative corona in wire-plate electrostatic precipitators. Part I: Characteristics of individual tuft-corona discharges , 1986 .

[13]  L. Schein,et al.  Physics of Electrophotography , 1986 .

[14]  G. Dinelli,et al.  Industrial experiments on pulse corona simultaneous removal of NO/sub x/ and SO/sub 2/ from flue gas , 1988 .

[15]  H. Araki,et al.  Production of ozone by surface and glow discharge at cryogenic temperatures , 1988 .

[16]  Infrared thermography of negative DC and negatively enhanced AC point-to-plane corona discharge in air , 1988 .

[17]  The electrode surface temperature profile in a corona discharge , 1988 .

[18]  P. Lawless,et al.  Narrow-Gap Point-to-Plane Corona with High Velocity Flows , 1986, 1986 Annual Meeting Industry Applications Society.

[19]  Jen-Shih Chang,et al.  Reduction of CO/sub 2/ from combustion gases by DC corona torches , 1988 .

[20]  Flow-enhanced corona discharge: the corona torch , 1988 .

[21]  Mechanism of the ozone formations in a near liquid nitrogen temperature medium pressure glow discharge positive column , 1988 .

[22]  Jen-Shih Chang The role of H2O and NH3 on the formation of NH4NO3 aerosol particles and De-NOx under the corona discharge treatment of combustion flue gases , 1989 .

[23]  P. Lawless,et al.  Triangle-shaped DC corona discharge device for molecular decomposition , 1989 .

[24]  W. C. Finney,et al.  Combined removal of SO/sub 2/, NO/sub x/, and fly ash from simulated flue gas using pulsed streamer corona , 1989 .

[25]  G. H. Ramsey,et al.  Control of volatile organic compounds by an AC energized ferroelectric pellet reactor and a pulsed corona reactor , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[26]  S. Masuda,et al.  Control of NOx by positive and negative pulsed corona discharges , 1990 .

[27]  Senichi Masuda,et al.  Control of NO/sub x/ by positive and negative pulsed corona discharges , 1990 .

[28]  Simultaneous Reduction of Soot and NOx in a Diesel Engine Exhaust by Discharge Plasma , 1991 .

[29]  Reviewing Clean Corona Discharge, Laser-Produced Plasma Ionization Technologies , 1991 .