Limit measures for affine cellular automata II

If $\mathbb{M}$ is a monoid and $\mathcal{A}$ is an Abelian group, then $\mathcal{A}^{\mathbb{M}}$ is a compact Abelian group; a linear cellular automaton (LCA) is a continuous endomorphism $\mathfrak{F}:\mathcal{A}^{\mathbb{M}}\longrightarrow \mathcal{A}^{\mathbb{M}}$ that commutes with all shift maps. If $\mathfrak{F}$ is diffusive, and $\mu$ is a harmonically mixing (HM) probability measure on $\mathcal{A}^{\mathbb{M}}$, then the sequence $\{\mathfrak{F}^N \mu\}_{N=1}^{\infty}$ weak* converges to the Haar measure on $\mathcal{A}^{\mathbb{M}}$ in density. Fully supported Markov measures on $\mathcal{A}^{\mathbb{Z}}$ are HM and non-trivial LCA on $\mathcal{A}^{(\mathbb{Z}^D)}$ are diffusive when $\mathcal{A}=\mathbb{Z}_{/p}$ is a prime cyclic group. In the present work, we provide sufficient conditions for diffusion of LCA on $\mathcal{A}^{(\mathbb{Z}^D)}$ when $\mathcal{A}=\mathbb{Z}_{/n}$ is any cyclic group or when $\mathcal{A}=(\mathbb{Z}_{/p^r})^J$ (p prime). We also show that any fully supported Markov random field on $\mathcal{A}^{(\mathbb{Z}^D)}$ is HM (where $\mathcal{A}$ is any Abelian group).

[1]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[2]  Karl Petersen Ergodic Theory , 1983 .

[3]  Klaus Schmidt Dynamical Systems of Algebraic Origin , 1995 .

[4]  Alejandro Maass,et al.  Time Averages for Some Classes of Expansive One-Dimensional Cellular Automata , 1999 .

[5]  A mean ergodic theorem for weakly mixing operators , 1971 .

[6]  Marcus Pivato,et al.  Limit measures for affine cellular automata , 2001, Ergodic Theory and Dynamical Systems.

[7]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[8]  M. Pivato Multiplicative Cellular Automata on Nilpotent Groups: Structure, Entropy, and Asymptotics , 2001, math/0108084.

[9]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[10]  L. Schwartz,et al.  Lectures on disintegration of measures , 1975 .

[11]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[12]  F. Spitzer Markov Random Fields on an Infinite Tree , 1975 .

[13]  K. Petersen Review: H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory , 1986 .

[14]  Alejandro Maass,et al.  Cesàro mean distribution of group automata starting from measures with summable decay , 2000, Ergodic Theory and Dynamical Systems.

[15]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[16]  Stan Zachary,et al.  Markov random fields and Markov chains on trees , 1983 .