Estimation of integrated squared density derivatives

Kernel density estimators are used for the estimation of integrals of various squared derivatives of a probability density. Rates of convergence in mean squared error are calculated, which show that appropriate values of the smoothing parameter are much smaller than those for ordinary density estimation. The rate of convergence increases with stronger smoothness assumptions. however, -1 unlike ordinary density estimation, the parametric rate of n can be achieved even when only a finite amount of differentiability is assumed. The implications for data-driven bandwidth selection in ordinary density estiamation are considered.

[1]  I. Ahmad Strong consistency of density estimation by orthogonal series methods for dependent variables with applications , 1979 .

[2]  G. Terrell The Maximal Smoothing Principle in Density Estimation , 1990 .

[3]  R. Serfling,et al.  On estimation of a class of efficacy-related parameters , 1981 .

[4]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[5]  W. R. Schucany,et al.  Improvement of Kernel Type Density Estimators , 1977 .

[6]  James Stephen Marron,et al.  On the Amount of Noise Inherent in Bandwidth Selection for a Kernel Density Estimator , 1987 .

[7]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[8]  Hira L. Koul,et al.  An Estimator of the Scale Parameter for the Rank Analysis of Linear Models under General Score Functions , 1987 .

[9]  Prakasa Rao Nonparametric functional estimation , 1983 .

[10]  J. Wolfowitz,et al.  Estimation of a density function at a point , 1967 .

[11]  Peter Hall Limit Theorems for Estimators Based on Inverses of Spacings of Order Statistics , 1982 .

[12]  Miroslaw Pawlak,et al.  On nonparametric estimation of a functional of a probability density , 1986, IEEE Trans. Inf. Theory.

[13]  G. Roussas,et al.  Estimation of a certain functional of a probability density function , 1969 .

[14]  J. Marron,et al.  Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation , 1987 .

[15]  M. C. Jones,et al.  On the errors involved in computing the empirical characteristic function , 1983 .

[16]  James C. Aubuchon,et al.  A note on the estimation of the integral of ⨍2(x) , 1984 .

[17]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[18]  D. W. Scott,et al.  Kernel density estimation with binned data , 1985 .

[19]  E. Schuster On the rate of convergence of an estimate of a functional of a probability density , 1974 .

[20]  R. H. Farrell On the Best Obtainable Asymptotic Rates of Convergence in Estimation of a Density Function at a Point , 1972 .

[21]  M. C. Jones Discretized and Interpolated Kernel Density Estimates , 1989 .

[22]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[23]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[24]  King-Sun Fu,et al.  Error estimation in pattern recognition via LAlpha -distance between posterior density functions , 1976, IEEE Trans. Inf. Theory.

[25]  Tore Schweder,et al.  Window Estimation of the Asymptotic Variance of Rank Estimators of Location. , 1973 .

[26]  James Stephen Marron,et al.  Choice of Kernel Order in Density Estimation , 1988 .

[27]  Farhad Mehran,et al.  The Generalized Jackknife Statistic , 1975 .

[28]  James Stephen Marron,et al.  Variable window width kernel estimates of probability densities , 1992 .

[29]  James Stephen Marron,et al.  Kernel Quantile Estimators , 1990 .

[30]  E. L. Lehmann,et al.  Nonparametric Confidence Intervals for a Shift Parameter , 1963 .

[31]  P. Bickel,et al.  Achieving Information Bounds in Non and Semiparametric Models , 1990 .

[32]  J. L. Hodges,et al.  The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .

[33]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[34]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[35]  K. Fukunaga,et al.  Nonparametric Data Reduction , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.