Uniqueness of the Gaussian Kernel for Scale-Space Filtering

Scale-space filtering constructs hierarchic symbolic signal descriptions by transforming the signal into a continuum of versions of the original signal convolved with a kernal containing a scale or bandwidth parameter. It is shown that the Gaussian probability density function is the only kernel in a broad class for which first-order maxima and minima, respectively, increase and decrease when the bandwidth of the filter is increased. The consequences of this result are explored when the signal¿or its image by a linear differential operator¿is analyzed in terms of zero-crossing contours of the transform in scale-space.

[1]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[2]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[3]  J. Bergen,et al.  A four mechanism model for threshold spatial vision , 1979, Vision Research.

[4]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[6]  Alan L. Yuille,et al.  Fingerprints Theorems , 1984, AAAI.

[7]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[8]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Benjamin B. Kimia,et al.  Deblurring Gaussian blur , 2015, Comput. Vis. Graph. Image Process..

[10]  Mark J. Carlotto,et al.  Histogram Analysis Using a Scale-Space Approach , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.