Low-Complexity Identification by Sparse Hyperparameter Estimation

[1]  Lennart Ljung,et al.  Asymptotic Properties of Hyperparameter Estimators by Using Cross-Validations for Regularized System Identification , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[2]  Tianshi Chen,et al.  On kernel design for regularized LTI system identification , 2016, Autom..

[3]  Johan Schoukens,et al.  Filter-based regularisation for impulse response modelling , 2016, ArXiv.

[4]  Stephen P. Boyd,et al.  Disciplined convex-concave programming , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[5]  Alessandro Chiuso,et al.  Regularization and Bayesian learning in dynamical systems: Past, present and future , 2015, Annu. Rev. Control..

[6]  Lennart Ljung,et al.  Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint , 2015, Autom..

[7]  Lennart Ljung,et al.  System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques , 2014, IEEE Transactions on Automatic Control.

[8]  Roy S. Smith,et al.  Frequency Domain Subspace Identification Using Nuclear Norm Minimization and Hankel Matrix Realizations , 2014, IEEE Transactions on Automatic Control.

[9]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[10]  Paul Tseng,et al.  Hankel Matrix Rank Minimization with Applications to System Identification and Realization , 2013, SIAM J. Matrix Anal. Appl..

[11]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[12]  Parikshit Shah,et al.  Linear system identification via atomic norm regularization , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[13]  Alan L. Yuille,et al.  The Concave-Convex Procedure (CCCP) , 2001, NIPS.

[14]  I. J. Good,et al.  How to Estimate Probabilities , 1966 .

[15]  Roy S. Smith,et al.  Regularized System Identification: A Hierarchical Bayesian Approach , 2020 .

[16]  Tianshi Chen,et al.  Multiple Kernel Based Regularized System Identification with SURE Hyper-parameter Estimator , 2018 .

[17]  L. Ljung,et al.  Asymptotic Properties of Generalized Cross Validation Estimators for Regularized System Identification , 2018 .

[18]  Lennart Ljung,et al.  Regularized LTI System Identification with Multiple Regularization Matrix , 2018 .

[19]  Alessandro Chiuso,et al.  Convex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso , 2014, J. Mach. Learn. Res..

[20]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .