Load determination for long cable bolt support using computer aided bolt load estimation (CABLE) program
暂无分享,去创建一个
In this paper a numerical formulation is presented for determination of the axial load along a cable bolt for a prescribed distribution of rock mass displacement. Results using the program CABLE indicate that during excavation, the load distribution that develops along an untensioned fully grouted cable bolt depends on three main factors: (i) the properties of the cable itself, (ii) the shear force that develops due to bond at the cable-grout interface (i.e. bond stiffness), and (iii) the distribution of rock mass displacement along the cable bolt length. in general, the effect of low modulus rock and mining induced stress decreases in reducing bond strength as determined from short embedment length tests, is reflected in the development of axial loads significantly less than the ultimate tensile capacity even for long cable bolts. However, the load distribution is also dependent on the deformation distribution in the reinforced rock mass. Higher cable bolt loads will be developed for a rock mass that behaves as a discontinuum, with deformation concentrated on a few fractures, than for one which behaves as a continuum, either due to a total lack of fractures or a very high fracture density. This result suggests that the stiffness ofmore » a fully grouted cable bolt is not simply a characteristic of the bolt and grout used, but also of the deformation behavior of the ground. In other words, the same combination of bolt and grout will be stiffer if the rock behaves as a discontinuum than if it behaves as a continuum. This paper also explains the laboratory test program used to determine the constitutive behavior of the Garford bulb and Nutcase cables bolts. Details of the test setup as well as the obtained results are summarized and discussed.« less