Interaction of two spherical particles rotating in a micropolar fluid

Abstract The steady-state axisymmetric flow of an incompressible micropolar fluid past two spherical particles is considered. The spherical particles are in general of different sizes and are rotating with different angular velocities about the line connecting their centers. Under the Stokes flow approximation, a general solution is constructed using superposition of the basic solutions in two moving spherical coordinate systems based on the centers of the particles. A collocation technique is used to satisfy the boundary conditions on the surfaces of the particles. Numerical results for the normalized couples acting on each particle are obtained with rapid convergence for various values of the employed parameters.

[1]  G. B. Jeffery,et al.  The Motion of Two Spheres in a Viscous Fluid , 1926 .

[2]  A. Kucaba-Pietal Low-Reynolds-number flow of micropolar fluid between converging spheres , 2000 .

[3]  Shih‐Yuan Lu,et al.  Creeping motion of a spherical aerosol particle in a cylindrical pore , 2002 .

[4]  M. H. Davis The slow translation and rotation of two unequal spheres in a viscous fluid , 1969 .

[5]  H. Keh,et al.  Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity , 2010 .

[6]  M. Balaram Micropolar Squeeze Films , 1975 .

[7]  I. Pop,et al.  MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux , 2009 .

[8]  A. Eringen,et al.  THEORY OF MICROPOLAR FLUIDS , 1966 .

[9]  S. Loyalka,et al.  Rotation of non-spherical axi-symmetric particles in the slip regime , 1994 .

[10]  T. Ariman,et al.  On Pulsatile Blood Flow , 1973 .

[11]  J. C. Misra,et al.  A mathematical model for the study of interstitial fluid movement vis-a-vis the non-newtonian behaviour of blood in a constricted artery , 2001 .

[12]  A. Acrivos,et al.  On the shape of a gas bubble in a viscous extensional flow , 1976, Journal of Fluid Mechanics.

[13]  Michael Zabarankin,et al.  Asymmetric three-dimensional Stokes flows about two fused equal spheres , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  A. Acrivos,et al.  Stokes flow past a particle of arbitrary shape: a numerical method of solution , 1975, Journal of Fluid Mechanics.

[15]  Tasawar Hayat,et al.  Effects of an endoscope on peristaltic flow of a micropolar fluid , 2008, Math. Comput. Model..

[16]  G. B. Jeffery,et al.  On a Form of the Solution of Laplace's Equation Suitable for Problems Relating to Two Spheres , 1912 .

[17]  V. K. Agrawal,et al.  Squeeze film and externally pressurized bearings micro-polar fluid lubricated , 1972 .

[18]  S. Loyalka Rotation of a closed torus in the slip regime , 1996 .

[19]  M. S. Faltas,et al.  Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid , 2008 .

[20]  Michael M. Khonsari,et al.  On the Performance of Finite Journal Bearings Lubricated with Micropolar Fluids. , 1988 .

[21]  S. Weinbaum,et al.  Stokes flow past finite coaxial clusters of spheres in a circular cylinder , 1976 .

[22]  M. E. O'Neill,et al.  Exact solutions of the equations of slow viscous flow generated by the asymmetrical motion of two equal spheres , 1969 .

[23]  Sheldon Weinbaum,et al.  A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion , 1980, Journal of Fluid Mechanics.

[24]  Hayakawa Slow viscous flows in micropolar fluids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  A. Eringen On nonlocal microfluid mechanics , 1973 .

[26]  M. S. Faltas,et al.  Slow motion of a sphere moving normal to two infinite parallel plane walls in a micropolar fluid , 2011, Math. Comput. Model..

[27]  H. Ramkissoon Slow steady rotation of an axially symmetric body in a micropolar fluid , 1977 .

[28]  G. B. Marali,et al.  DYNAMIC REYNOLDS EQUATION FOR MICROPOLAR FLUID LUBRICATION OF POROUS SLIDER BEARINGS , 2008 .

[29]  G. B. Jeffery On the Steady Rotation of a Solid of Revolution in a Viscous Fluid , 1915 .

[30]  S. Weinbaum,et al.  A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids , 1971, Journal of Fluid Mechanics.

[31]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[32]  M. M. R. Williams,et al.  Aerosol Science: Theory and Practice , 1991 .

[33]  H. Keh,et al.  Creeping motion of a slip spherical particle in a circular cylindrical pore , 2007 .

[34]  Saleem Asghar,et al.  Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold sidewalls , 2011, Math. Comput. Model..

[35]  M. S. Faltas,et al.  Axi-symmetric translational motion of an arbitrary solid prolate body in a micropolar fluid , 2010 .

[36]  B. U. Felderhof Hydrodynamic interaction between two spheres , 1977 .

[37]  I. Pop,et al.  Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface , 2006 .

[38]  E. Amendola,et al.  Lightly crosslinked liquid crystalline epoxy resins: The effect of rigid‐rod length and applied stress on the state of order of the cured thermoset , 1997 .

[39]  M. E. O'neill,et al.  Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I: The determination of exact solutions for any values of the ratio of radii and separation parameters , 1970 .